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A COUNTEREXAMPLE ON THE CLOSEDNESS OF

THE CONVEX HULL OF A CLOSED CONE IN Rn
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Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. In this note, the following question, not discussed well in the
literature, is considered:

Is the convex hull of A closed if A is a closed cone in R
n?

When n = 1 or 2, the answer to the above problem is affirmative. The main
purpose of this brief note is to give a simple example showing that the answer
is negative when n ≥ 3.

A subset A of R
n is called a cone if λx ∈ A whenever x ∈ A and λ ≥ 0. Useful

facts about cones can be found in [1]. We consider here the following question:

Is the convex hull of A closed if A is a closed cone in R
n ?

We will give an example to show that the answer to the question is negative when
n ≥ 3.

Let

A = {(x, 0, 0)|x ∈ R} ∪ {α(x, tanh x, 1)|α ≥ 0, x ∈ R}

and

C(A) = {(x, 0, 0)|x ∈ R} ∪ {(x, y, z)|x ∈ R,−z < y < z, 0 < z}.

Then A is a closed cone in R3 but co(A) is not closed where co(A) denotes the
convex hull of A. This statement will be verified by the following results.

Proposition 1. A is a closed cone.

Proof. It is clear that A is a cone. To show that A is closed, it suffices to prove
that

cl({α(x, tanh x, 1)|α ≥ 0, x ∈ R}) ⊂ A,

where cl(K) denotes the closure of a set K in R3. Let (x∗, y∗, z∗) be the limit of
a sequence {αn(xn, tanh xn, 1)} in the set {α(x, tanh x, 1)|α ≥ 0, x ∈ R}, that is,

(x∗, y∗, z∗) = lim
n→∞

αn(xn, tanh xn, 1).
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If z∗ = 0, then αn → 0 as n → ∞ and so y∗ = 0 because |tanh xn| < 1. Therefore,
we have

lim
n→∞

αn(xn, tanh xn, 1) = (x∗, 0, 0) ∈ A.

If z∗ 6= 0, then αn → z∗ as n → ∞ and so

xn →
x∗

z∗
and αntanh xn → z∗tanh

x∗

z∗
= y∗ as n → ∞.

Therfore, we have

(x∗, y∗, z∗) = z∗
(x∗

z∗
, tanh

x∗

z∗
, 1

)

∈ A

This completes the proof.

Proposition 2. C(A) is a convex set containing A but it is not closed.

Proof. It is clear that C(A) contains A and it is not closed. The convexity of
C(A) is clear from the following observations:

(i) If two points belong to {(x, 0, 0)|x ∈ R}, then the line segment connecting
these given points is contained in {(x, 0, 0)|x ∈ R}.

(ii) If two points belong to {(x, y, z)|x ∈ R,−z < y < z, 0 < z}, then the line
segment connecting these points is also contained in {(x, y, z)|x ∈ R,−z < y <

z, 0 < z}.

(iii) If a point belongs to {(x, 0, 0)|x ∈ R} and another point belongs to {(x, y, z)|x ∈
R,−z < y < z, 0 < z}, then the line segment connecting these points is also con-
tained in {(x, y, z)|x ∈ R,−z < y < z, 0 < z}.

This completes the proof.

Proposition 3. co(A) = C(A).

Proof. It is clear from Proposition 2 that co(A) ⊂ C(A). It remains to prove that

C(A) ⊂ co(A).

It suffices to show that

{(x, y, z)|x ∈ R,−z < y < z, 0 < z} ⊂ co(A).

Let (x, y, z) ∈ {(x, y, z)|x ∈ R,−z < y < z, 0 < z}. We prove that there exists
x∗ ∈ R such that

(x, y, z) ∈ {α(1, 0, 0) + β(x∗, tanh x∗, 1)|α ∈ R,β ≥ 0},

that is,

(x, y, z) ∈ co
(

{α(1, 0, 0)|α ∈ R} ∪ {β(x∗, tanh x∗, 1)|β ≥ 0}
)

.

Since 0 < z, it is sufficient to check that
(x

z
,
y

z
, 1

)

∈ {α(1, 0, 0) + β(x∗, tanh x∗, 1)|α ∈ R,β ≥ 0}.
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Since −1 <
y

z
< 1, there exists x∗ ∈ R such that tanh x∗ =

y

z
. And since

〈
(x

z
,
y

z
, 1

)

, (1, 0, 0) ×
(

x∗,
y

z
, 1

)

〉 = 〈
(x

z
,
y

z
, 1

)

,
(

0,−1,
y

z

)

〉 = 0,

(where 〈 , 〉 and × denote the inner product and vector product in R3, respec-

tively) that is,
(x

z
,
y

z
, 1

)

, (1, 0, 0) and
(

x∗,
y

z
, 1

)

are coplanar, we obtain
(x

z
,
y

z
, 1

)

∈ {α(1, 0, 0) + β(x∗, tanh x∗, 1)|α ∈ R,β ≥ 0},

which implies that

(x, y, z) ∈ co
(

{α(1, 0, 0)|α ∈ R} ∪ {β(x∗, tanh x∗, 1)|β ≥ 0}
)

⊂ co(A).

This completes the proof.
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