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NECESSARY OPTIMALITY CONDITIONS IN

PROBLEMS INVOLVING SET-VALUED MAPS

WITH PARAMETERS

PHAN QUOC KHANH AND LE MINH LUU

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. The Fritz John and Kuhn-Tucker necessary optimality conditions
are proved for problem min F (x, u), s.t. G(x, u) ⊂ −M , 0 ∈ P (x, u) or s.t.
G(x, u)∩(−M) 6= ∅, 0 ∈ P (x, u), where x is the state variable, u is a parameter,
F , G and P are multifunctions.

1. Introduction

Optimization problems with parameters, which appear not because of the prob-
lems being perturbed but as a second kind of variables and on which the imposed
assumptions should differ from that imposed on the main variables are important
and often met in applications. For instance, in control problems, the control vari-
ables should be considered separately from the state variables. Such parameter-
ized optimization problems involving only single-valued functions are considered
in [6], [8-12] with applications in deriving the Pontryagin maximum principle for
control problems with state constraints.

On the other hand, optimization problems involving multi-valued functions
become more and more the forms of the literature, see, e.g., [1-4], [13-21]. In
[14], [15] the main results in [6], [11] are extended to multifunction optimization
problems with an equality constraint still being single-valued. Such problems are
of practical importance since in many situations the equality constraint represent
equations, say differential equations, and initial conditions. However, in other
cases, differential inclusions may replace the differential equations to describe the
system under consideration. The aim of this note is to extend the results of [14],
[15] to such cases. Namely, we consider the following problems.

Let X, Y , Z and W be Banach spaces, Y and Z being ordered by convex cones
K and M , respectively, containing the origin and with nonempty interiors. Let
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U be a nonempty set. Let F , G and P be multifunctions of X ×U into Y , Z and
W , respectively. Our problem is

min F (x, u),

G(x, u) ⊂ −M,(P)

0 ∈ P (x, u);

or

min F (x, u),

G(x, u) ∩ (−M) 6= ∅,(P̃ )

0 ∈ P (x, u).

Here “min” indicates a minimum or weak minimum. Recall that a multifunction
F : X ∼→ Y is said to have a (global) weak minimum at (x0; f0), where f0 ∈
F(x0), on a set A ⊂ X, if

F(A) − f0 ⊂ Y \ (−int K).(1)

If there is a neighborhood N of x0 such that (1) holds with F(A) replaced by
F(A∩N), then (x0; f0) is called a local weak minimum of F . If in (1) Y \(−int K)
is replaced by Y \ ((−K) \K), then we have the definition for (global) minimum.

Let Z? be the topological dual to Z and M? the dual cone of M , i.e.

M? :=
{

µ ∈ Z? : 〈µ, z〉 ≥ 0, ∀z ∈ M
}

.

In the sequel a feasible point (x0, u0) and some g0 ∈ G(x0, u0) ∩ (−M) will be
fixed. Then we use the notations

M0 :=
{

γ(z + g0) : γ ∈ R+, z ∈ M
}

,

M?
0 :=

{

µ ∈ M? : 〈µ, g0〉 = 0
}

= (M0)
?.

The graph of a multifunction F : X ∼→ Y is

grF :=
{

(x, y) ∈ X × Y : y ∈ F(x)
}

and the domain of F is

domF :=
{

x ∈ X : F(x) 6= ∅
}

.

Recall that the Clarke derivative of F at (x0, f0) ∈ grF , denoted by DF(x0; f0),
is a multifunction of X into Y whose graph is

grDF(x0; f0) =
{

(v,w) ∈ X × Y : ∀(xn, fn) →F (x0, f0),∀tn → 0+,

∃(vn, wn) → (v,w),∀n, fn + tnwn ∈ F(xn + tnvn)
}

,

where →F means that (xn, fn) ∈ grF and (xn, fn) → (x0, f0). Recall also that
DF(x0; f0) is always a closed convex process, i.e. a multifunction whose graph is
a nonempty closed convex cone.

We shall need the following directional differentiability and lower semicontinu-
ity with respect to (w.r.t.) x.
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Definition 1 [14]. Let X and Y be Banach spaces, Y being ordered by a convex
cone K. A multifunction F : X ∼→ Y is called uniformly K-differentiable in the
direction x ∈ X at (x0, f0) ∈ grF if for each neighborhood V of zero in Y there
is a neighborhood N of x and a real γ0 > 0 such that ∀γ ∈ (0, γ0), ∀x ∈ N ,
∀f ∈ F(x0 + γx), ∀f ′ ∈ DF(x0; f0)x

1

γ
(f − f0) − f ′ ∈ V − K.

F is said to be uniformly K-differentiable at (x0; f0) if this differentiability holds
for all directions x in domDF(x0; f0).

Definition 2 [14]. Let X, Y and F be as in Definition 1. Let x0 ∈ domF
and T ⊂ F(x0) be nonempty. Then, F is called K-strong lower semicontinuous
(K-s.l.s.c.) with T at x0 if for each neighborhood V of zero in Y , there is a
neighborhood N of x0 such that ∀x ∈ N,∃fx ∈ F(x),

fx − T ⊂ V − K.

If ∃fx ∈ F(x) is replaced by ∀fx ∈ F(x), then we have the definition of uniform
K-lower semicontinuity (K-u.l.s.c.).

Note that if x0 ∈ int domF , then K-u.l.s.c. implies K-s.l.s.c. and if F is
K-s.l.s.c. with F(x0), then F(.) + K is lower semicontinuous in the usual sense
for multifunctions.

As for parameter u, the set U is equipped with no structure. However, the
following extensions of the usual convexlikeness [5] are needed.

Definition 3. Let U be a set, Y and Z be vector spaces ordered by convex cones
K and M , respectively.

(i) A multifunction F : U ∼→ Y is said to be K-convexlike if ∀ui ∈ U , ∀fi ∈
F(ui), i = 1, 2, ∀γ ∈ [0, 1], ∃u ∈ U , ∃fu ∈ F(u),

(1 − γ)f1 + γf2 − fu ∈ K.

(ii) (F ,G) : U ∼→ Y ×Z is said to be K×M convexlike strongly with respect to
G if ∀ui ∈ U , ∀fi ∈ F(ui), ∀gi ∈ G(ui), i = 1, 2, ∀γ ∈ [0, 1], ∃u ∈ U , ∀gu ∈ G(u),
∃fu ∈ F(u),

(1 − γ)f1 + γf2 − fu ∈ K,

(1 − γ)g1 + γg2 − gu ∈ M.

Like the convex case, from the above properties for i = 1, 2 it follows that the
properties are true for i = 1, ....m for any natural number m.

Let Σm :=
{

(α1, α2, ..., αm) :
m
∑

i=1
αi ≤ 1, αi ≥ 0

}

.

Definition 4. A multifunction (F ,P) : X × U ∼→ Y × W is said to be weakly
K × {0} -convexlike in (U, {u0}) at x0, strongly with respect to P, if for any
finite set {u1, ..., um} ⊂ U , there is a neighborhood N of x0 such that ∀x ∈ N ,
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∀(α1, ..., αm) ∈ Σm, ∃fui
x ∈ F (x, ui), ∀pui

x ∈ P (x, ui), i = 0, ...,m, ∃u ∈ U ,
∃fu

x ∈ F (x, u), ∃pu
x ∈ P (x, u) such that

fu0

x +
m

∑

i=1

αi(f
ui
x − fu0

x ) − fu
x ∈ K,

pu0

x +

m
∑

i=1

αi(p
ui
x − pu0

x ) − pu
x = 0.

To work with inclusions we also need some notion for sections of a multifunction
F : X ∼→ Y .

Let x0 ∈ domF , f0 ∈ F(x0). A map f : X → Y defined in a neighborhood
N of x0 is called a regular local section of F at (x0, f0) if f(x0) = f0, f(x) ∈
F(x) for all x ∈ N

⋂

domF and f ′(x0)X = Y , where f ′ denotes the Fre’chet
derivative. f is said to be a subregular local section if f ′(x0)X = Y is replaced
by f ′(x0)X = DF(x0; f0)X and DF(x0; f0)X has finite codimension.

2. Necessary optimality conditions

The following necessary optimality condition for local weak minima and local
minima is an extension of Theorem 1 of [14].

Theorem 1. Assume that (x0, u0) is feasible for (P̃ ) and

(i1) for each x ∈ X, p′x ∈ DxP (x0, u0; 0)x, P (., u0) has a subregular local
section p(., u0) at (x0, 0) being continuously differentiable and such that p′x =
p′x(x0, u0)x, where DxP (x0, u0; p0) := DP (., u0)(x0; p0) with p0 ∈ P (x0, u0);

(i2) For each u 6= u0 and p ∈ P (x0, u), P (., u) has a continuously differentiable
local section p(., u) at (x0, p);

(ii) F (., u0) and G(., u0) are uniformly K-differentiable at (x0, u0; f0) and uni-
formly M-differentiable at (x0, u0; g0), respectively, where f0 ∈ F (x0, u0), g0 ∈
G(x0, u0)

⋂

(−M);

(iii) for each u 6= u0, F (., u) (G(., u), respectively) is K-s.l.s.c. with F (x0, u)
(M-s.l.s.c. with G(x0, u)) at x0. Moreover, F (., u0) (G(., u0)) is K-s.l.s.c. with
f0 (M-s.l.s.c. with g0, respectively) at x0;

(iv) for each x in a neighborhood of x0, (F,G,P )(x, .) is K × M × {0}-
convexlike.

If (x0, u0; f0) is a local weak minimum of (P̃ ), then there exists

(λ0, µ0, ν0) ∈ K? × M?
0 × W ? \ {0}

such that, for all (x, u) ∈ X × U ,

〈λ0,DxF (x0, u0; f0)x + F (x0, u) − f0〉 + 〈µ0,DxG(x0, u0; g0)x + G(x0, u) − g0〉

+ 〈ν0,DxP (x0, u0; 0)x + P (x0, u)〉 ⊂ R+.(2)
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Proof. For x outside the intersection of the domains of the three Clarke derivatives
on the left-hand side of (2), this side is empty and (2) holds. So we may assume
that x belongs to this intersection. However, for simplicity we write x ∈ X.

Let

L = DxP (x0, u0; 0)X, B = L + P (x0, U).

Then B is convex, since P (x0, U) is convex by the convexlikeness assumed in (iv).
Aff (B) is a subspace with finite codimension. If Aff (B) 6= W then there exists
ν0 ∈ W ∗ \ {0} such that, for all (x, u) ∈ X × U,

〈ν0,DxP (x0, u0; 0)x + P (x0, u)〉 = 0

and (2) is satisfied with λ0 = 0, µ0 = 0.

Now assume that Aff (B) = W and let Π stand for the canonical projection of
W onto W/L. Since Π(B) is convex and Aff (Π(B)) = W/L, one has int Π(B) 6= ∅.
As Π−1(Π(B)) = B, int B 6= ∅. If 0 /∈ int B, 0 can be separated from B by some
ν0 ∈ W ? \ {0}, i.e., for all (x, u) ∈ X × U,

〈ν0,DxP (x0, u0; 0)x + P (x0, u)〉 ≥ 0

and (2) holds again with λ0 = 0, µ0 = 0.

It remains the case 0 ∈ intB. Consider the set C of all (y, z, w) ∈ Y ×Z × W
such that ∃(x, u) ∈ X × U , ∃f ′

x ∈ DxF (x0, u0; f0)x, ∃g′x ∈ DxG(x0, u0; g0)x,
∃p′x ∈ DxP (x0, u0; 0)x, ∃fu

x0
∈ F (x0, u), ∃gu

x0
∈ G(x0, u), ∃pu

x0
∈ P (x0, u),

f ′

x + fu
x0

− f0 − y ∈ −intK,

g′x + gu
x0

− g0 − z ∈ −intM,

p′x + pu
x0

− w = 0.

Similarly as in [14], by the convexity of the Clarke derivatives and the K ×
M × {0}-convexlikeness assumed in (iv) one sees the convexity of C.

By the uniform directional differentiability of F (., u0) and G(., u0) stated in
(ii) and by a similar argument as that of Lemma 2.2 of [15] it is not hard to check
that intC 6= ∅. If

C
⋂

{(−int K) × (−int M??
0 ) × {0}} = ∅,(3)

then by a standard separation theorem we obtain (2). Therefore, it is sufficient
now to prove (3). Suppose to the contrary the existence of (x̂, û) ∈ X × U , f ′

x̂ ∈
DxF (x0, u0; f0)x̂, g′x̂ ∈ DxG(x0, u0; g0)x̂, p′x̂ ∈ DxP (x0, u0; 0)x̂, f û

x0
∈ F (x0, û),

gû
x0

∈ G(x0, û) and pû
x0

∈ P (x0, û) such that

f ′

x̂ + f û
x0

− f0 ∈ −int K,(4)

g′x̂ + gû
x0

− g0 ∈ −int M??
0 ,(5)

p′x̂ + pû
x0

= 0.(6)

With there x̂ and p′x̂, by (i1) one has a subregular local section p(., u0) at (x0, 0)
such that p′x̂ = p′x(x0, u0)x̂.
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Since 0 ∈ int Π(B) and Aff(Π(B)) = W/L is finite dimensional, there exist
z1, ..., zm ∈ Π(B) such that Aff{z1, ..., zm} = W/L and z1 + · · ·+ zm = 0. By the
definition of B there are x1 ∈ X, ui ∈ U , pui

x0
∈ P (x0, ui), i = 1, ...,m, such that

Π(pui
x0

) = zi,(7)

p′x(x0, u0)x1 +
m

∑

i=1

pui
x0

= 0,(8)

Aff(L
⋃

{P (x0, ui) : i = 1, ...,m}) = W.(9)

By (i2) there are local sections p(., ui) such that p(x0, ui) = pui
x0

.

In virtue of (5), there is δ > 0 such that

g′x̂ + gû
x0

− g0 + δBZ − M ⊂ −int M??
0 ,(10)

where BZ is the open unit ball in Z.

The uniform M -differentiability of G(., u0) stated in (ii) implies the existence
of a neighborhood N1 of x̂ and of t1 > 0 such that ∀z ∈ N1, ∀t ∈ (0, t1),
∀gz ∈ G(x0 + tz, u0),

gz ∈ g0 + tg′x̂ + t
δ

4
BZ − M.(11)

Choose ε1 such that x̂ + ε1x1 ∈ N1. Take arbitrarily gui
x0

∈ G(x0, ui), i = 1, ...,m,

and ε2 such that ε2

m
∑

i=1
(gui

x0
− g0) ∈

δ

4
BZ . Set ε = min{ε1, ε2} and

P(x, α0, α1, ..., αm) = p(x, u0) + α0(p(x, û) − p(x, u0)) + ε
m

∑

i=1

αi(p(x, ui)) − p(x, u0)).

We have

P(x0, 0, ..., 0) = 0,

P ′(x0, 0, ..., 0)(x, α0 , α1, ..., αm) = p′x(x0, u0)x + α0p(x0, û) + ε

m
∑

i=1

αip(x0, ui),

P ′(x0, 0, ..., 0)(x̂ + εx1, 1, ..., 1) = p′x(x0, u0)(x̂ + εx1) + p(x0, û) + ε

m
∑

i=1

p(x0, ui)

= p′x(x0, u0)x̂ + p(x0, û) + ε(p′x(x0, u0)x1

+

m
∑

i=1

p(x0, ui)) = 0.

So (x̂ + εx1, 1, ..., 1) ∈ KerP ′(x0, 0, ..., 0). Hence, by the Lusternik theorem, there
are mappings t → x(t), t → α0(t), ..., t → αm(t) of some interval [0, t0] into R
such that x(t) → 0, αi(t) → 0, i = 1, ...,m, as t → 0+, and

P(t(x̂ + εx1 + x(t)), t(1 + α0(t), ..., t(1 + αm(t))) = 0.(12)
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By setting x(t) := x0 + t(x̂ + εx1 + x(t)), (12) becomes

p(x(t), u0) + t(1 + α0(t))(p(x(t), û) − p(x(t), u0))

+ ε

m
∑

i=1

t(1 + αi(t))(p(x(t), ui) − p(x(t), u0)) = 0.

By virtue of the strong lower semi continuity assumed in (iii), for given x(t)
and û there are gû

x(t) ∈ G(x(t), û), gu0

x(t) ∈ G(x(t), u0), f û
x(t) ∈ F (x(t), û) and

fu0

x(t) ∈ F (x(t), u0) such that, for all t and ε small enough,

gû
x(t) − gû

x0
∈ εBZ − M,(13)

−gu0

x(t) + g0 ∈ εBZ − M,(14)

f û
x(t) − f û

x0
∈ εBY − K,(15)

−f û
x(t) + f0 ∈ εBY − K.(16)

The convexlikeness supposed in (iv) now yields u(t) ∈ U , ft ∈ F (x(t), u(t)),
and gt ∈ G(x(t), u(t)) such that

fu0

x(t) + t(1 + α0(t))(f
û
x(t) − fu0

x(t)) + ε

m
∑

i=1

t(1 + αi(t))(f
ui

x(t) − fu0

x(t)) − ft ∈ K,

(17)

gu0

x(t) + t(1 + α0(t))(g
û
x(t) − gu0

x(t)) + ε

m
∑

i=1

t(1 + αi(t))(g
ui

x(t) − gu0

x(t)) − gt ∈ M,

(18)

0 ∈ P (x(t), u(t)).(19)

At this point, a contradiction to the minimality of (x0, u0; f0) will be achieved
if we can show that for all t small enough, gt ∈ −M and ft − f0 ∈ −intK. We
argue in detail for gt since the reasoning for ft is similar.

We consider the terms in (18). By (13), (14) and since αi(t) is small for small
t, i = 0, ...,m, we have

t(1 + α0(t))(g
û
x(t) − gu0

x(t)) = t(1 + α0(t))(g
û
x(t) − gû

x0
− gu0

x(t) + g0)

+ t(gû
x0

− g0) + tα0(t)(g
û
x0

− g0)

⊂ t(1 + α0(t))(2εBZ − M) + t(gû
x0

− g0) + tεBZ

⊂ t(gû
x0

− g0 +
δ

4
BZ − M)

for t and ε small enough. Similarly, for i = 1, ...,m,

t(1 + αi(t))(g
ui

x(t) − gu0

x(t)) ⊂ t(gui
x0

− g0 +
δ

4m
BZ − M).(20)
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Combining (11) with z = x̂ + εx1 + x(t) and (20) shows that the left-hand side
of (18) belongs to the left-hand side of the inclusion

g0 + t(g′x̂ + gû
x0

− g0 + ε

m
∑

i=1

(gui
x0

− g0) +
δ

4
BZ +

δ

4
BZ +

δ

4
BZ − M) − gt

⊂ g0 + t(g′x̂ + gû
x0

− g0 + δBZ − M) − gt.

Therefore, for some bt
δ ∈ δBZ and mt ∈ M, (18) becomes

g0 + t(g′x̂ + gû
x0

− g0 + bt
δ − mt) − gt ∈ M.(21)

To verify that gt ∈ −M for all sufficiently small t > 0, we suppose to the contrary
that ∃tn → 0+, ∃µn ∈ M∗, ‖µn‖ = 1, (then assume that µn tends *weakly to
µ ∈ M∗), 〈µn, gtn〉 ≥ 0. We claim that µ ∈ M∗

0 . Indeed, if µ /∈ M∗
0 there would

be β > 0 such that 〈µ, g0〉 < −β. On the other hand, (21) implies

〈µn, gtn〉 ≤ 〈µn, g0〉 + tn〈µn, g′x̂ + gû
x0

− g0 + btn
δ − mtn〉.(22)

Hence, 〈µn, gtn〉 < 0 for tn small enough, which is a contradiction. As µ ∈
M?

0 , (10) gives, for large n,

tn〈µn, g′x̂ + gû
x0

− g0 + btn
δ − mtn〉 < 0,

and then (22) is impossible due to the supposed nonnegativity of 〈µn, gtn〉.

The above reasoning for gt applied to ft shows that

ft − f0 ∈ t(f ′

x̂ + f û
x0

− f0 + bt
δ − kt) − K ⊂ −K − int K = −int K.

Thus a contradiction to the minimality of (x0, u0; f0) has been obtained and the
proof is complete.

With a constraint qualification of the Slater type added to the assumptions of
Theorem 1 we obtain a Kuhn-Tucker necessary condition as follows.

Theorem 2. Assume additionally to the assumptions of Theorem 1 that
DxP (x0, u0; 0)X + P (x0, U) contains a neighborhood of zero in W and that there
are (x̃, ũ) ∈ X × U , g′x̃ ∈ DxG(x0, u0; g0)x̃, p′x̃ ∈ DxP (x0, u0; 0)x̃, gũ

x0
∈ G(x0, ũ)

and pũ
x0

∈ P (x0, ũ) such that

g′x̃ + gũ
x0

− g0 ∈ −int M∗∗

0 ,

p′x̃ + pũ
x0

= 0.

Then, λ0 6= 0.

Proof. The same as in [14].

Remark 1. Theorem 1 extends Theorem 1 of [14] to the case where P : X×U ∼→
W is a multifunction. Moreover, it is an improvement, even when applying to
the case of P being single-valued. Namely, in (i), p(., u0) is assumed subregular,
not necessarily regular. However, in (iv), (F,G,P )(x, .) needs to be assumed
K × M × {0}-convexlike (in U , not only in (U, {u0})). This strengthening in
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turn can be relaxed if we replace the strong semicontinuity in (iii) by the uniform
semicontinuity as follows.

Theorem 1’. Let the assumptions (i1), (i2) and (ii) be as in Theorem 1. Assume
further

(iii′) for each u 6= u0, F (., u)(G(., u), respectively) is K -u.l.s.c. with F (x0, u)(M -
u.l.s.c. with G(x0, u)) at x0. Moreover, F (., u0) (G(., u0)) is −K-u.l.s.c. with f0

(−M-u.l.s.c. with g0, respectively) at x0;

(iv′) (F,G,P )(x0, .) is K × M × {0}-convexlike. Moreover, (F,G,P )(., .) is
weakly K × M × {0}-convexlike in (U, {u0}) at x0, strongly w.r.t. P .

Then the conclusion of Theorem 1 is still valid.

Proof. The proof is similar to that of Theorem 1.

Passing to problem (P ), it is not hard to verify that Theorems 1, 2 and 1’ still
hold if the convexlikeness and weak convexlikeness assumed in (iv) and (iv’) are
strong w.r.t. G (following Definition 3 (ii)).

In order to apply the Fritz John and Kuhn-Tucker conditions to optimal control
problems with state constraints to derive the Pontryagin maximum principle,
the assumed convexlikeness is replaced in [6], [11] by what we call approximate
convexlikeness. This result is extended to multifunction optimization problems
with single-valued equality constraints in [15]. Now we prove the corresponding

extension to (P ) and (P̃ ). This time, a detailed presentation is devoted to (P )

instead of (P̃ ).

Definition 5. Problem (P ), or the composite multifunction (F,G,P ), is said to
be approximate-convexlike at (x0, u0) if there exists a section p(., .) of P (., .) such
that for each u ∈ U , p(., u) is continuously differentiable at x0 and p(x0, u0) = 0,
and that for each finite set {u1, ..., us} ⊂ U , for each δ > 0, there are ε > 0, a
neighborhood V of x0, a mapping v : V × εΣs −→ U , e ∈ K, q ∈ M such that
for all x, x′ ∈ V , there are fui

x ∈ F (x, ui), gui
x ∈ G(x, ui), i = 0, 1, ..., s, so that for

all α,α′ ∈ ε
∑s, gx ∈ G(x, v(x, α)), there exists fx ∈ F (x, v(x, α)) such that, for

all p′ ∈ DxP (x0, u0; 0)(x − x′) and pui
x0

∈ P (x0, ui),

v(x, 0) = u0,

fu0

x +
s

∑

i=1

αi(f
ui
x − fu0

x ) + δ(‖x − x0‖ +
s

∑

i=1

αi)e − fx ∈ K,(23)

gu0

x +
s

∑

i=1

αi(g
ui
x − gu0

x ) + δ(‖x − x0‖ +
s

∑

i=1

αi)q − gx ∈ M,(24)
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∥

∥p(x, v(x, α)) − p(x′, v(x′, α′)) − p′ +

s
∑

i=1

(αi − α
′

i)p
ui
x0

∥

∥

≤ δ(‖x − x′‖ +

s
∑

i=1

|αi − α
′

i|).(25)

Now assume that (x0, u0) is feasible for (P ) and f0 ∈ F (x0, u0), g0 ∈ G(x0, u0).

Theorem 3. Assume (i1), (ii) and (iii′) as in Theorem 1’. Assume further

(iv”) (F,G,P ) is approximate convexlike at (x0, u0).

Then the conclusion of Theorem 1’ still holds.

Proof. Set

L = DxP (x0, u0; 0)X, B = L + convp(x0, U).

If Aff(B) 6= W , 0 /∈ int B, the conclusion is obtained exactly as in Theorem 1.

For the case 0 ∈ intB, define the set C of all (y, z, w) ∈ Y ×Z ×W such that
∃x ∈ X, ∃ {u1, ..., um} ⊂ U , ∃γi > 0, ∃(fi, gi, pi) ∈ (F,G,P )(x0, ui), i = 1, ...,m,
∃f ′

x ∈ DxF (x0, u0; f0)x, ∃g′x ∈ DxG(x0, u0; g0)x, ∃p′x ∈ DxP (x0, u0; 0)x,

f ′

x +
m

∑

i=1

γi(fi − f0) − y ∈ −intK,(26)

g′x +

m
∑

i=1

γi(gi − g0) − z ∈ −intM,(27)

p′x +

m
∑

i=1

γipi − w = 0.(28)

Similarly as in [15], C is seen to be a convex set with nonempty interior. If (3)
holds, the proof will be complete by applying a standard separation theorem.

Now suppose, incontrary to (3), that there are x′ ∈ X, u01, ..., u0m0
∈ U , γ01 >

0, ..., γ0m0
> 0, (f0

j , g0
j , p0

j) ∈ (F,G,P )(x0, u0j), j = 1, ...,m0, f ′ ∈ DxF (x0, u0; f0)x
′,

g′ ∈ DxG(x0, u0; g0)x
′, p′ ∈ DxP (x0, u0; 0)x

′, such that

f ′ +

m0
∑

j=1

γ0j(f
0
j − f0) ∈ −intK,

g′ +

m0
∑

j=1

γ0j(g
0
j − g0) ∈ −int M∗∗

0 ,

p′ +

m0
∑

j=1

γ0jp
0
j = 0.

Since Aff(Π(B)) = W/L is finite dimensional, there exist z1, ..., zk ∈ Π(B) such
that Aff{z1, ..., zk} = W/L and z1+...+zk = 0. The definition of B yields x1 ∈ X,
γ11 > 0, ..., γ1m1

> 0, ..., γk1 > 0, ..., γkmk
> 0, u11, ..., u1m1

, ..., uk1, ..., ukmk
∈ U ,
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p′x1
∈ DxP (x0, u0; 0)x1, and Pqi ∈ P (x0, uqi), q = 1, ..., k, and i = 1, ...,m0 such

that

Π
(

mq
∑

i=1

γqipqi

)

= zq , q = 1, ..., k,

p′x1
+

k
∑

q=1

mq
∑

i=1

γqipqi = 0,(29)

Aff(L
⋃

{pqi : q = 1, ..., k, i = 1, ...,mq}) = W.(30)

By Lemma 1.2 of [15] the conditions (26), (27), (28) show that for all (f q
i , gq

i ) ∈

Y ×Z, all small θ > 0, there are f
′
∈ DxF (x0, u0; f0)(x

′+θx1), g′ ∈ DxG(x0, u0; g0)(x
′+

θx1), and for p′ = p′ + θp′x1
∈ DxP (x0, u0; 0)(x

′ + θx1),

f
′
+

m0
∑

j=1

γ0j(f
0
j − f0) +

k
∑

q=1

(

mq
∑

i=1

θγqi(f
q
i − f0)

)

∈ −int K,(31)

g′ +

m0
∑

j=1

γ0j(g
0
j − g0) +

k
∑

q=1

(

mq
∑

i=1

θγqi(g
q
i − g0)

)

∈ −intM∗∗

0 ,(32)

p′ +

m0
∑

j=1

γ0jp
0
j +

k
∑

q=1

mq
∑

i=1

θγqipqi = 0.(33)

Setting x = x′+θx1, u1 = u01, ..., um0
= u0m0

, um0+1 = u11, .., us = um0+m1+..+mk
=

ukmk
, α1 = γ01, ..., αm0

= γ0m0
, αm0+1 = θγ11, ..., αs = θγkmk

, f1 = f0
1 ,

fm0
= f0

m0
, fm0+1 = f1

1 , ..., f s = fk
mk

and similarly for g1, ..., gs, and p1, ..., ps.
(31), (32), (33) together with (29), and (30) become

f
′
+

s
∑

j=1

αj(f j − f0) ∈ −int K,(34)

g′ +

s
∑

j=1

αj(gj − g0) ∈ −intM∗∗

0 ,(35)

p′ +
s

∑

j=1

αjpj = 0,(36)

Aff
(

L
⋃

{pj : j = 1, ..., s}
)

= W.(37)

Taking into account assumption (iv”), for these u1, ..., us and some δ > 0 we have
(23)-(25) (with u1, ..., us in the place of u1, ..., us).

In accordance with assumption (i1), for x and p′ there is a local section p(., u0)
with p(x0, u0) = 0 and p′ = p′x(x0, u0)x. Define a mapping P and a bounded
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linear mapping A of a neighborhood of (x0, 0) ∈ X × Rs into W by

P(x, α) = p(x, v(x, α+)) +

s
∑

j=1

α−

j pj ,

A(x, α) = p′x(x0, u0)x +

s
∑

j=1

αjpj ,

where α+
j := max{αj , 0}; α−

j := αj − α+
j , α+ := (α+

1 , ..., α+
s ). By (25), for all

(x, α) and (x′, α
′

) in V × ε
∑s we have

‖P(x, α) − P(x′, α
′

) − A(x, α) + A(x′, α
′

)‖

=
∥

∥

∥
p(x, v(x, α+)) − p(x′, v(x′, α

′+)) − p′x(x0, u0)(x − x′) −
s

∑

j=1

(α+
j − α

′+
j )pj

∥

∥

∥

≤ δ
(

‖x − x′‖ +

s
∑

j=1

|αj − α
′

j |
)

.

(38)

By (37), A(X × Rs) = W . Let A : (X × Rs)/Ker A → W be the one-to-one

mapping corresponding to A. If δ is chosen so small that δ‖A
−1

‖ < 1/2, then
by the Ioffe-Tihomirov generalization of the Lusternik theorem [6,p.34] (or [7] for
more general setting), there exist t > 0, k > 0 and a mapping t → (x(t), α(t)) of
[0, t] into X × Rs such that, for all t ∈ [0, t],

P(x0 + tx + x(t), tα + α(t)) = 0,

‖x(t)‖ +

s
∑

j=1

|αj(t)| ≤ k‖P(x0 + tx, tα)‖

= k‖P(x0 + tx, tα) − P(x0, 0) − A(x0 + tx, tα) − A(x0, 0)‖

≤ tkδ(‖x‖ +

s
∑

j=1

αj),(39)

Therefore, x(t) and u(t) tend to 0 as t does. If δ is also satisfied

kδ
(

‖x‖ +

s
∑

j=1

αj

)

< min{α1, ..., αs},

then (39) implies that

‖x(t)‖ +

s
∑

j=1

|αj(t)| < t min{α1, ..., αs}.

Hence tαj + αj(t) > 0 for all j and all small t. Consequently,

P(x, tα + α(t)) = p(x, v(x, tα + α(t))) ∈ P (x, v(x, tα + α(t))).
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Setting

x(t) = x0 + tx + x(t) , u(t) = v(x(t), tα + α(t)),

we have

0 = p(x(t), u(t)) ∈ P (x(t), u(t)).

Now the same lines in the last part of the proof of Theorem 2.1 in [15] indicates
that for all t small enough, G(x(t), u(t)) ⊂ −M and there is f t ∈ F (x(t), u(t))
such that f t − f0 ∈ −int K. By this, a contradiction to the minimality of
(x0, u0; f0) is obtained and the proof of the theorem is complete.

Examining the above proof it is easy to see that for problem (P̃ ), Theorem 3
is still valid even with the relaxation in (iv”) that we only require the existenxe
of gx ∈ G(x, v(x, α)).

3. Examples

The assumptions of the theorems presented in this paper have complicated
formulations (they look so even in the corresponding results of [6], [11] for the
single-valued case), but they are weak and not hard to check as shown by the
following examples.

Example 1 (Illustration of Theorem 1). Let X = W = C1
[0,1], Y = Z = U =

R and K = M = R+. Let f : X → R be continuously differentiable in a
neghborhood of x0 satisfying x0 6= const and x0(0) = 0. Consider the following
optimization problem involving a differential inclusion

min
(

1
∫

0

f(x(t))dt + u2
)

,(40)

‖x − x0‖
2(|u|[0, 1] − 1) ⊂ −R+,(41)

ẋ ∈
{ ẋ0 + 2aẋ0x0 − aẋ0x

ax0 + 1
: a ∈ R

}

, x(0) = 0.(42)

It is easy to see that if there is a neighborhood V of x0 such that f(x) ≥ f(x0) for
all x ∈ V, then (x0, u0) := (x0, 0) is a local minimum of the problem (40)-(42). To
reduce this problem to a problem of the type (P ) observe that (42) is equivalent
to

0 ∈
{

aẋx0 + ẋ − ẋ0 − 2aẋ0x0 + aẋ0x : a ∈ R
}

, x(0) = 0

or, what is the same,

0 ∈
{ d

dt
[(x − x0)(ax0 + 1)] : a ∈ R

}

, x(0) = 0.

Integrating this shows that (42) is equivalent to

0 ∈ {(x − x0)(ax0 + 1) : a ∈ R},

which is of the form 0 ∈ P (x, u) (but P does not depend on u).
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Taking f0 =
1
∫

0

f(x(t))dt and g0 = 0 we verify that all the assumptions of the

necessary optimality condition for (P ) corresponding to Theorem 1 for (P̃ ), are
satisfied.

Since F is single-valued, assumptions (ii) and (iii) for F are clear. As for G,
an argument similar to that of the Example in [14] will do. Passing to (i1) let
x ∈ X and p′x ∈ DxP (x0, 0; 0)x. Then the section

P (x, u0) =







x − x0 if x = 0,
p′x
x

(x − x0) if x 6= 0,

apparently meets (i1). For (i2), observing that P (x0, u) = {0} for each u ∈ U,
the section P (x, u) = x − x0 is seen to be suitable. Finally we check (iv) (with
the strong- w.r.t.−G convexlikeness). ∀x ∈ C1

[0,1], ∀ u1 ∈ U , ∀u2 ∈ U , ∀γ ∈ [0, 1],

taking u = 0, fu =
1
∫

0

f(x(t))dt and gx = −‖x − x0‖
2 we have

(1 − γ)
(

1
∫

0

f(x(t))dt + u2
1

)

+ γ
(

1
∫

0

f(x(t))dt + u2
2

)

−

1
∫

0

f(x(t))dt

= (1 − γ)u2
1 + γu2

2 ∈ R+,

(1 − γ)‖x − x0‖
2(|u1|[0, 1] − 1) + γ‖x − x0‖

2(|u2|[0, 1] − 1) + ‖x − x0‖
2

= (1 − γ)‖x − x0‖
2|u1|[0, 1] + γ‖x − x0‖

2|u2|[0, 1] ⊂ R+,

(1 − γ)P (x, u1) + γP (x, u2) = P (x, u).

Thus, (iv) is fulfilled.

Example 2 (Illustration of Theorem 3). Let X = Y = Z = W = U = R and
K = M = R+. Let F : X ∼→ Y, v : X → Y, w : U → Y and P : U ∼→ W be
given multifunctions or (single-valued) mapping. Let x0 ∈ X and u0 ∈ U . The
problem under consideration is

min[(x − x0)
2F(u) + v(x) + w(u)],

(x − x0)
2(|u1|[0, 1] + u0) ⊂ −R+,

0 ∈ (x − x0)P (u).

Let the following technical assumptions be satisfied.

(a) F(u) is bounded for all u ∈ U . F(.) has a section f(.) such that sup{|f(u)| :
u ∈ N(u0)} := A is finite, where N(u0) is a neighborhood of u0.

(b) v(.) is differentiable at x0 and w(.) is linear.

(c) 1 ∈ P (u) for all u ∈ U and P (u0) = {1}.

Now we verify the assumptions of Theorem 3 with f0 = v(x0)+w(u0), g0 = 0.
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A direct calculation gives us the Clacke derivatives

DxP (x0, u0; 0)x = {x},(43)

DxF (x0, u0; f0)x = {v′(x0)x}.

for each x ∈ R. By (43), (i1) is easy to be checked with the regular section
p(., u0) = x − x0. Assumptions (ii) and (iii′) for G are shown to be satified in
a manner similar to that of the Example in [14]. As for F , to consider (ii) let
x ∈ R and ε > 0. We have to show that for all sufficiently small γ > 0, and all x
near to x,

1

γ
(F (x0 + γx, u0) − f0) − v′(x0)x ⊂ (−ε, ε) − R+.

This is true by (a) and (b) since the left-hand side is

γx2F(u0) +
v(x0 + γx) − v(x0)

γ
− v′(x0)x.

Now examine the uniform lower semicontinuity of F (., u) stated in (iii′). For
given ε > 0, we have

F (x, u) − F (x0, u) = (x − x0)
2F(u) + v(x) − v(x0) ⊂ (−ε, ε)

whenever x is near to x0 since F(u) is bounded and v(.) is continuous. So F (., u)
is R+-u.l.s.c. with F (x0, u) at x0. Similarly, F (., u0) is −R+-u.l.s.c. with f0 at
x0.

Now pass to (iv”). We choose p(x, u) = x − x0. Let u1, ..., us and δ be given.
Put

M = max{|ui|, i = 1, ..., s},

Q = max{A, 1,max{|f(ui)|, i = 0, ..., s}},

ε = min
{ δ

4QM
,

δ

4Q
, 1

}

,

V = (x0 − ε, x0 + ε),

v(x, α) = u0 +

s
∑

j=1

αj(uj − u0),

e = 1 and q = 1. Then, for x, x′ ∈ V we take

fui
x = (x − x0)

2f(ui) + v(x) + w(ui)

gui
x = (x − x0)

2u0.

Next, for all α,α′ ∈ εΣs take

fx = (x − x0)
2f(v(x, α)) + v(x) + w(v(x, α)).
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Further more, in our case p′ = x − x′ and pui
x0

= 0. Then (23) is checked by the
following estimation

fu0

x +
s

∑

i=1

αi

(

fui
x − fu0

x ) − fx + δ(|x − x0| +
s

∑

i=1

αi

)

= (x − x0)
2
(

f(u0) − f(u0 +

s
∑

i=1

αi(ui − u0))
)

+ (x − x0)
2

s
∑

i=1

αi(f(ui) − f(u0)) + δ
(

|x − x0| +
s

∑

i=1

αi

)

≥ −(x − x0)
22Q − (x − x0)

22Q

s
∑

i=1

αi + δ
(

|x − x0| +
s

∑

i=1

αi

)

≥ −
δ

2
|x − x0| −

δ

2

s
∑

i=1

αi + δ
(

|x − x0| +
s

∑

i=1

αi

)

≥ 0,

Similarly as the Example in [15], condition (24) is satisfied. In turn (25) is clear
for p(x, u) = x − x0.

4. Final remarks

The necessary optimality conditions of the Fritz John type obtained in [4],
[17], [18], [19] for multifunction optimization need a crucial assumption that the
ordering cone in the product of all the image spaces has nonempty interior because
the main tool of the proof is a standard separation theorem. In our consideration
the ordering cone in W is {0} since the optimization problem involves equality
constraints. This leads to numerous applications in control problems.

The emptyness (together with the parameter involved) requires a complicated
technical machine to overcome. The core of this machine is the Lusternik theorem.
We restrict ourshelves to the case where the multifunction P in the inclusion
constraint has suitable (single-valued) sections. We think that, in order to omit
this restriction a generalization of multifunctions of the Lusternik theorem is
needed and general results of [7] may be concerned.

Another further consideration should be applications of the results presented
here to control problems involving differential inclusions. Note that the corre-
sponding results for the single-valued case have been succesfully applied to control
problems involving diffrential equations.
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