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ON SOME HEREDITARY PROPERTIES

BETWEEN I AND IN(I)

HENRIK BRESINSKY AND LÊ TUÂN HOA

1. Introduction

Let S = K[x1, ..., xn] be the polynomial ring in n variables over an infinite
field K and let I ⊆ S be a homogeneous polynomial ideal. Given an admissible
term order on the terms of S, let in<(I) (or in(I) if the term order is either
immaterial or clear from the context) denote the ideal generated by the initial
terms of elements in the ideal I. It is well known that certain properties of
the ring S/I may be deduced from the ring S/in(I) and conversely, sometimes
with respect to certain specified term orders (see for instance Chapter 15 in
[5]). The most fundamental result in this respect is perhaps Macaulay’s Theorem
linking the Hilbert function of a homogeneous ideal I to in(I). This way certain
questions about ideals in polynomial rings can be reduced to questions about
monomial ideals.

In this paper we examine the properties of being Cohen-Macaulay (C.M.),
generalized Cohen-Macaulay (generalized C.M.) and Buchsbaum in the above
setting. It is well known that the C.M. and generalized C.M. properties for S/I
are inherited from S/in(I) (see, e.g., [7]). For the C.M. property it was shown
by Bayer and Stillman in [2], that in generic coordinates the converse is also true
for reverse lexicographic (rev. lex.) term orders. In the first part of this paper
we show that, in a certain sense to be explained, the rev. lex. term order is
the unique term order with this property. This once more points out the specific
role of the rev. lex. term order as already noted in [2] and [5]. In contrast to
the first part, we show in the second part, that there is no change of coordinates
and no term order such that the generalized C.M. property of S/in(I) follows
hereditarily from S/I. In the last part we show that not even the Buchsbaum
property of S/I follows hereditarily from S/in(I).

2. The Cohen-Macaulay property

Throughout this paper let S be as specified in the introduction. When conve-
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nient we will denote the term xa1

1 ...xan
n ∈ S, where a = (a1, ..., an) is an n-tuple of

nonnegative integers, by xa. An admissible term order < on the terms of S is a
linear order of the terms such that 1 is the unique minimal element, and m1 < m2

for terms m1, m2 implies mm1 < mm2 for any term m. We will consider only
graded (admissible) term orders, i.e. m1 < m2 if deg(m1) < deg(m2), where deg
denotes the usual polynomial degree (deg(xi) = 1, 1 ≤ i ≤ n). As pointed out
in the introduction the rev. lex. order plays a special role among graded term
order. For the convennience of the reader we recall its definition here.

Definition 2.1. For the rev. lex. term order xa > xb if either

(i) deg(xa) > deg(xb) or

(ii) deg(xa) = deg(xb) and the last nonzero entry of the vector a− b is negative.

Note that by Definition 2.1 x1 > · · · > xn and Definition 2.1 must be modified
if one changes the order of the variables.

For 0 6= F ∈ S, let in(F ) be the largest term resulting from a nonzero monomial
term of F (a term is a monomial with coefficient 1, a nonzero monomial term
may have any nonzero coefficient). For a homogeneous ideal I ⊆ S, let in(I)
denote the ideal generated by all in(F ), F ∈ I. It is well known, that if in(I)
is perfect (i.e. S/in(I) is a C.M. ring), then I is perfect (see, e.g., [4], Corollary
3.1, or [7], Satz 4.3). The converse to this statement (without restrictions on the
term order) is known to be not true. The purpose of this section is to consider
the following problem.

Problem 1. Characterize all term orders such that I perfect implies in(I) is
perfect.

First of all we show that the coordinates (variables) on which the term order
is to be defined, cannot be chosen arbitrarily, but depend on the given ideal I.

Proposition 2.2. There is no term order on the variables x1, ..., xn (n ≥ 3)
such that in(I) is a perfect ideal for all perfect ideals I ⊆ S.

Proof. Let < be any term order. W.l.o.g. we may assume x1 > x2 > · · · > xn.
We consider the following example due to M. L. Green (see Example 2.22 in
[8]): I = (x2

1, x1x2 + x2
3). Note that we always have x2

1 > x1x2 > x1x3 > x2
3.

Hence in(I) = (x2
1, x1x2, x1x

2
3, x

4
3). Clearly x2, x4, ..., xn is a system of parameters

(s.o.p.) and a regular sequence on S/I, but although x2, x4, ..., xn is a s.o.p. on
S/in(I), x2 is not a regular element on S/in(I). Thus S/I is C.M., but S/in(I)
is not.

If the variables are chosen sufficiently generic modulo a given ideal I (see
Definition 1.5 in [2]), then by [2], Lemma 2.3, the rev. lex. term order is a
term order such that S/I being C.M. implies S/in(I) is C.M. The next theorem
shows that it is the unique term order with this property. This result generalizes
Theorem 3.1(ii) in [4].
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Theorem 2.3. Let < be a term order such that x1 > · · · > xn (n ≥ 3). Assume
that in(I) is perfect for all perfect ideals I ⊆ S, in(I) subject to the condition

(*) xn−d+1, ..., xn is a s.o.p. on S/in(I), where d = dim(S/I).

Then < is the rev. lex. term order.

Before embarking on the proof of Theorem 2.3, we note that a condition such
as (*) is necessary by virtue of Proposition 2.2 and the example in its proof. The
converse of Theorem 2.3, namely that (*) together with < being the rev. lex.
term order imply in(I) perfect for all perfect I, follows by [2], Lemma 2.3 and
Theorem 2.4.

Proof. Assume that < is not the rev. lex. term order and that the variables
(possibly after permuting subscripts) satisfy x1 > x2 > · · · > xn. Since <
is not the rev. lex. term order, there are two terms p and q of equal degree
such that p = xa1

i1
...xau

iu
, q = xb1

j1
...xbv

jv
, with all exponents greater than zero,

1 ≤ i1 < · · · < iu ≤ n, 1 ≤ j1 < · · · < jv ≤ n, jv < iu, but p > q. Let
U = {i1, ..., iu} and V = {j1, ..., jv}. W.l.o.g. we may assume U ∩ V = ∅,
since mxi > m′xi if and only if m > m′. Hence g.c.d.(p, q) = 1. Also (by the

arrangement of the variables with respect to <) x
deg(p)
iu

= x
deg(q)
iu

< x
deg(q)
jv

< q,

thus u ≥ 2, v ≥ 1 (hence n ≥ 3). For notational convenience let r = iu, a = au

and p′ = xa1

i1
...x

au−1

iu−1
. Let I = (xc1

1 , ..., x
cr−1

r−1 , xj1p
′, ..., xjvp′, p + q = p′xa

r + q),

where

ci =











1 if i 6∈ U ∪ V,

ai + 1 if i ∈ U,

bi + 1 if i ∈ V, 1 ≤ i ≤ r − 1.

We have the following properties of I:

(i) in(p + q) = p′xa
r = p.

(ii)

g.c.d.(p, xci

i ) =

{

1 if i 6∈ U,

xai

i if i ∈ U, 1 ≤ i ≤ r − 1.

(iii) g.c.d.(xjp
′, p) = p′ for j ∈ V and xjq = x

cj

j qj for some term qj if j ∈ V .

By (i)-(iii), applying Buchberger’s algorithm to the listed generating set for I,
results in

G(I) = {xc1
1 , ..., x

cr−1

r−1 , xj1p
′, ..., xjv p′, p′xa

r + q, xi1q, ..., xiu−1
q}

as a Gröbner basis for I. Therefore

in(I) = (xc1
1 , ..., x

cr−1

r−1 , xj1p
′, ..., xjv p′, xa

rp
′, xi1q, ..., xiu−1

q) ⊆ (x1, ..., xr−1).
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Hence xr, ..., xu is a s.o.p. for S/in(I), i.e. in(I) satisfies (*) of Theorem 2.3. Since
xa−1

r p′ ∈ in(I) : xr ⊆ (in(I), xr+1, ..., xn) : xr, but xa−1
r p′ 6∈ (in(I), xr+1, ..., xn),

in(I) is not perfect. It remains to show that I is a perfect ideal.

Since in((I, xr, ..., xn)) ⊇ (in(I), xr, ..., xn), xr, ..., xn is also a s.o.p. for S/I.
For all j ∈ V we have j < r and also i < r if i ∈ U \ {r}. From this one
obtains that xr+1, ..., xn is a regular sequence on S/I. Let S′ := K[x1, ..., xr] and
I ′ = I ∩ S′. If <′ is the rev. lex. term order on S′ (with xr as smallest linear
term), we then obtain in<′(I ′) = (xc1

1 , ..., x
cr−1

r−1 , xj1p
′, ..., xjv p′, q). Clearly xr is a

regular element on S′/in<′(I ′), i.e. S′/in<′(I ′) is a C.M. ring. Therefore S′/I ′ is
also a C.M. ring, from which it follows that I is perfect.

3. The generalized Cohen-Macaulay property

Let d = dim(S/I) (the Krull dimension) and m := (x1, ..., xn). S/I is called
a generalized C.M. ring if one of the following equivalent conditions is satisfied
(see [10], [11]):

(i) All local cohomology modules H i
m(S/I), i < d, are of finite length.

(ii) There is a nonnegative integer k such that mkH i
m(S/I) = 0 for all i, 0 ≤ i <

d.

(iii) There is a positive integer t such that all s.o.p. x1, ..., xd in mt are an
mt-weak sequence, i.e. mt((x1, ..., xi−1) : xi) ⊆ (x1, ..., xi−1), 1 ≤ i ≤ d.

In these cases we also say I is a generalized C.M. ideal.

S/I is said to be a Buchsbaum ring (and I a Buchsbaum ideal), if t can be
taken to be 1 in (iii) and S/I is called a quasi-Buchsbaum ring if k = 1 in (ii).
By Corollary 1 in [7], if S/in(I) is a generalized C.M. ring with respect to some
term order, then S/I is also a generalized C.M. ring. This section concerns itself
with the following problem (see also [4] pp. 157).

Problem 2. Characterize the term orders such that if S/I is a generalized C.M.
ring, then S/in(I) is a generalized C.M. ring.

The following result provides a negative answer to Problem 2. For a given term
order let gin(I) denote the initial ideal in generic coordinates in Galigo’s sense
(see [6] or Section 15.9 in [5]). We then have:

Proposition 3.1. Let < be a term order, I ⊆ S a homogeneous ideal of positive
dimension. If S/gin(I) is a generalized C.M. ring, then H i

m(S/I) = 0 for all
i 6= 0, d (and also, by the previous, S/I is a generalized C.M. ring). The converse
is true if < is the rev. lex. term order.

In order to prove Proposition 3.1, we need the following useful property of
generalized C.M. rings.
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Lemma 3.2. (for a proof see Lemma I.2.2 in [10]) If S/I is a generalized
C.M.ring, then I is unmixed up to an m-primary component.

Proof of Proposition 3.1. W.l.o.g. assume x1 > x2 > · · · > xn and x1, ..., xn are
generic coordinates in Galigo’s sense, i.e. gin(I) = in<(I) = in(I).

⇒. Assume that S/I is a generalized C.M. ring. Since in(I) is a Borel fixed
ideal, any associated prime of in(I) has the form (x1, ..., xi) for some i ≤ n(see

Corollary 15.25 in [5]). By Lemma 3.2 it follows that the saturation ĩn(I) of in(I)
has the unique associated prime (x1, ..., xn−d). This means that xn−d+1, ..., xn is a

regular sequence on S/ĩn(I). Hence H i
m(S/in(I)) = H i

m(S/ĩn(I)) = 0 for i 6= 0, d.
By Satz 4.3 in [7], it follows that H i

m(S/I) = 0 for i 6= 0, d.

⇐. By Propositions 15.12 and 15.24 in [5], we have in(I : x∞

n ) = in(I) : x∞

n =

ĩn(I). Since S/I is a generalized C.M. ring and xn is a parameter element of

S/I, I : x∞

n = Ĩ. By assumption S/Ĩ is a C.M. ring. Hence by Lemma 2.3 in [2],

S/in(Ĩ) = S/ĩn(I) is also a C.M. ring. Therefore S/in(I) is a generalized C.M.
ring

If the coordinates are not generic, the last proposition is false. As a trivial
example one can take a monomial ideal I ⊆ S such that S/I is a generalized
C.M. ring, 0 < depth(S/I) < d, and < is an arbitrary term order on the variables
x1, ..., xn.

As a natural modification of Problem 2 one might consider the following:

Problem 2’. Assume that I ⊆ S is a generalized C.M. ideal. Does there exist a
change of variables and a term order (in the new variables) such that S/in(I) is
a generalized C.M. ring?

The answer again unfortunately is negative as the next theorem shows.

Theorem 3.3. There exists a generalized C.M. ideal I such that with respect to
any coordinates and with respect to any term order S/in(I) is not a generalized
C.M. ring.

To prove this theorem we will give two examples. In the first example I is a
Buchsbaum ideal, in the second S/I is a domain.

Example 3.4 (see Example 5.3 in [1]). Let

I = (x2
1, x1x2, x

2
2, x1x3 − x2x4) ⊆ K[x1, ..., x4].

Then I is a Buchsbaum ideal and I satisfies the statement in Theorem 3.3.

Proof. In [1] it is shown that I is a Buchsbaum ideal with H0
m(S/I) = 0 and

H1
m(S/I) ∼= K. We have deg(I) := e(S/I) = 2. Suppose there is a change of

variables into x, y, u, v and a term order in these new variables such that in(I) ⊆
S = K[x, y, u, v] is a generalized C.M. ideal. By Lemma 3.2, in(I) = J ∩ Q,
where J is an unmixed monomial ideal of dimension 2 and Q is an m-primary
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ideal. Then deg(J) = 2 and H1
m(S/J) = H1

m(S/in(I)). From H1
m(S/in(I)) = 0 it

would follow by Satz 3.4 in [7], that H1
m(S/I) = 0, which is not possible. Thus J

is not a perfect ideal. W.l.o.g. we assume J = (x, y) ∩ (u, v) = (xu, xv, yu, yv).
Since dimK [in(I)]2 = dimK [I]2 = 4 = dimK [J ]2, [in(I)]2 = [J ]2 follows. In
particular the term in(x2

1), x2
1 ∈ K[x, y, u, v], must be a product of two distinct

variables from x, y, u, v. Assume x1 = a1z1 + · · · + aizi ∈ K[x, y, u, v], where
aj ∈ K \ {0}, 1 ≤ j ≤ i and z1 > · · · > zi are distinct variables from {x, y, u, v}.
But then in(x2

1) = z2
1 , a contradiction. Thus S/in(I) is not a generalized C.M.

ring.

Example 3.5. Let I = p be the defining ideal of the monomial curve (s5, s4t, st4, t5)
in S = K[x1, ..., x4]. Then p satisfies the statement of Theorem 3.3.

Proof. We have deg(p) = 5, the Hilbert polynomial PS/p(n) = 5n + 1 and S/p

is a generalized C.M. domain with H1
m(S/p) 6= 0 (see, e.g., [10], pp. 171). If

S/in(p) is a generalized C.M. ring for some term order and change of variables, say
{x1, ..., x4} is mapped into {x, y, u, v}, then in(p) = J∩Q, where J ⊆ K[x, y, u, v]
is an unmixed monomial ideal of dimension 2 and Q is an m-primary ideal. We
list the following properties of J :

(i) deg(J) = 5 = deg(p).

(ii) PS/J(n) = 5n + 1 = PS/p(n). In paricular, J has genus 0.

(iii) J contains at least one monomial of degree 2, since in(p) ⊆ J and

p = (x1x4 − x2x3, x
4
2 − x3

1x3, x
3
2x4 − x2

1x
2
3, x

2
2x

2
4 − x1x

3
3, x2x

3
4 − x4

3).

(iv) J is not a perfect ideal (see the proof in Example 3.4).

Note that an associtaed prime ideal of J has the form (z,w) with {z,w} ⊂
{x, y, u, v}. If q is the corresponding (z,w)-primary component of J , then q =
(za, zbwc, wd) = (zb, wd) ∩ (za, wc) for some integers a > 0, d > 0 and 0 ≤ b <
a, 0 ≤ c < d. Hence J = q1 ∩ q2 ∩ ... ∩ qt such that:

(a) Each qi is of the form (zai , wbi), {z,w} ⊂ {x, y, u, v}.

(b) For all {z,w} there are at most two qi with equal radical (z,w).

(c) No qi, 1 ≤ i ≤ t, can be omitted.

(d) a1 = max{a1, b1} =: a ≥ max{a2, b2} ≥ · · · ≥ max{at, bt}.

Therefore, w.l.o.g., we may assume q1 = (xa, yb), a ≥ b ≥ 1. Note that
deg(J) =

∑

p
multJ(p), where p runs over all associated prime ideals of J and

multJ(p) = `(Sp/JSp) (` = length).

Using (a)-(d), we can list all unmixed monomial ideals of dimension 2 and
degree 5 in S. Up to a possible permutation of the variables x, y, u, v, there
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are exactly 59 such ideals, which are listed in the Appendix. Employing the
computer system “Macaulay” of [3], we obtain that there are only two ideals
satisfying (i)-(iv), namely J1 = (x3, y) ∩ (u2, v) and J2 = (x2, y2) ∩ (u, v). For J

equal to J1 or J2,
√

J = (x, y) ∩ (u, v). By [9] the initial complex ∆(in(L)), for
an ideal L ⊆ K[y1, ..., yn], is defined as ∆(in(L)) = {{yi1 , ..., yit}; K[yi1, ..., yit ]∩
in(L) = (0)}. Since J is the unmixed part of in(p), ∆(in(p)) = ∆(

√
J) =

{{x}, {y}, {u}, {v}, {x, y}, {u, v}}. This complex is not strongly connected, which
contradicts Theorem 1 in [9]. Thus S/in(p) is not a generalized C.M. ring.

Remark 3.6. Let p ⊆ K[x1, ..., x4] be the defining prime ideal of the so called
Macaulay curve (s4, s3t, st3, t4). If S/in(p) was a generalized C.M. ring for some
change of variables {x1, ..., x4} into {x, y, u, v} and some term order, then, as in
the proof of Example 3.5, in(p) = (x2u, x2v, xyv, yu). We believe that this also
is unlikely to be the case. For instance if {x1, ..., x4} = {x, y, u, v}, then xyv
is not a part of any reduced and normalized Gröbner basis as an inspection of
p = (x1x4 − x2x3, x

3
2 − x2

1x3, x
2
2x4 − x1x

2
3, x2x

2
4 − x3

3) will show.

4. The Buchsbaum property

In the previous section we did see that the generalized C.M. property is not
hereditary from I to in(I), but is hereditary from in(I) to I. There are exam-
ples which show that, with respect to certain term orders, even the Buchsbaum
property is not hereditary from in(I) to I (see [4], Example 3.1 and pp. 217 in
[7]). The following proposition renders a more complete description.

Proposition 4.1. There is an ideal I ⊆ K[x, y, z] = S such that for all term
orders (on the variables x, y, z), S/in(I) is a Buchsbaum ring, but S/I is not a
quasi-Buchsbaum ring.

Proof. Let I = (x(x2 + xy + y2), z(x2 + xy + y2), y3, x2y) ⊆ S. Then I is of
dimension 1. For any term order <1 such that y <1 x, by a straightforward
Gröbner basis calculation, in<1

(I) = (x3, x2y, y3, xy2z, x2z). Clearly z2 is a pa-
rameter element of S/in<1

(I) in m2 and in<1
(I) : z2 = (in<1

(I), xy2, x2). Since
(x, y, z)(xy2, x2) ⊆ in<1

(I), S/in<1
(I) is a Buchsbaum ring (see Propositions

I.2.1 and I.2.12 in [10]). For any term order <2 such that x <2 y, a Gröbner basis
calculation gives in<2

(I) = (x4, y3, xy2, x2y, x3z, y2z). As before S/in<2
(I) is a

Buchsbaum ring. Hence S/in(I) is a Buchsbaum ring for an arbitrary term order.
For S/I, z is a parameter element and x2+xy+y2 ∈ I : z. But y(x2+xy+y2) 6∈ I,
since if this were the case, then xy2 = y(x2+xy+y2)−x2y−y3 ∈ I, which contra-
dicts xy2 6∈ in<1

(I). Thus (x, y, z)(I : z) 6⊆ I and S/I is not a quasi-Buchsbaum
ring by Proposition I.2.1 in [10].

By Proposition I.1.9 in [10], a S/I-basis in m = (x1, ..., xn) ⊆ K[x1, ..., xn]
exists. Therefore, by the following result, Proposition 4.1 may no longer be true
if one is allowed to change coordinates.
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Proposition 4.2. Assume that I ⊆ S = K[x1, ..., xn] is a d-dimensional ideal
such that any subset of d variables forms a s.o.p. of S/I (the definition of an
S/I-basis in m). Assume further that for any subset {xi1 , ..., xid} of d variables
there is a rev. lex. term order such that:

(i) xi > xj if i 6∈ {i1, ..., id} and j ∈ {i1, ..., id}.

(ii) S/in(I) is a Buchsbaum ring.

Then S/I is a Buchsbaum ring.

Proof. Let {i1, ..., id} ⊆ {1, ..., n} be a set of d indices. Assume that there is a
rev. lex. term order satisfying the hypothesis of Proposition 4.2. W.l.o.g. assume
xi1 > · · · > xid . By Lemma 2.2 in [2] in(I, xi1 , ..., xid) = (in(I), xi1 , ..., xid), hence
xi1, ..., xid is also a s.o.p. of S/in(I). Since in(I, x2

i1
, ..., x2

id
) ⊇ (in(I), x2

i1
, ..., x2

id
),

we have `(S/(in(I), x2
i1

, ..., x2
id

))−`(S/(in(I), xi1 , ..., xid)) ≥ `(S/(I, x2
i1

, ..., x2
id

))−
`(S/(I, xi1 , ..., xid)). By Lemma 2.2 in [11], we obtain:

`(S/(I, x2
i1 , ..., x

2
id

)) − `(S/(I, xi1 , ..., xid)) ≥
e(x2

i1 , ..., x
2
id

;S/I) − e(xi1 , ..., xid ;S/I) = (d2 − 1)e(S/I).(**)

(Note that (xi1 , ..., xid) is a minimal reduction of mS/I and e(xi1 , ..., xid ;S/I) =
e(S/I).) By assumption S/in(I) is a Buchsbaum ring, therefore

`(S/(in(I), x2
i1 , ..., x

2
id

)) − `(S/(in(I), xi1 , ..., xid)) =

e(x2
i1 , ..., x

2
id

;S/in(I)) − e(xi1 , ..., xid ;S/in(I)) = (d2 − 1)e(S/in(I)).

Since e(S/I) = e(S/in(I)), we must have equality in (**), i.e. xi1 , ..., xid is a
standard s.o.p. of S/I in the sense of [11]. Therefore by Proposition 3.1 in [11],
S/I is a Buchsbaum ring.

Appendix for Example 3.5

Unmixed monomial ideals J ⊆ K[x, y, u, v] of dimension 2 and degree 5 (up to
equivalence of a permutation of variables), J=q1∩...∩qt, qi ⊆ pi =

√
qi, 1 ≤ i ≤ t.

Case I: pi 6= pj , i 6= j, q1 = (xa, yb) ⊆ (x, y) = p1.

a = 5 ⇒ b = 1, t = 1.

1. J = (x5, y) C.M., excluded by (iv)
in the proof of Ex. 3.5

a = 4 ⇒ b = 1, t = 2.

2. J = (x4, y) ∩ (x, u) = (x4, yx, yu) genus 3, excluded by (ii)
in the proof of Ex. 3.5

3. J = (x4, y) ∩ (y, u) = (x4u, y) C.M.
4. J = (x4, y) ∩ (u, v) = (x4u, x4v, yu, yv) genus 2
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a = 3 ⇒ b = 1 ⇒ 2 ≤ t ≤ 3.
t = 2

5. J = (x3, y) ∩ (x2, u) = (x3, yx2, yu) genus 2
6. J = (x3, y) ∩ (x, u2) = (x3, yx, yu2) genus 2
7. J = (x3, y) ∩ (y2, u) = (y2, x3u, yu) genus 3
8. J = (x3, y) ∩ (y, u2) = (y, x3u2) C.M.
9. J = (x3, y) ∩ (u2, v) = (x3u2, x3v, yu2, yv) genus 0

t = 3

10. J = (x3, y) ∩ (x, u) ∩ (x, v) = (x3, y) ∩ (x, uv)
= (x3, yx, yuv) genus 2

11. J = (x3, y) ∩ (x, u) ∩ (y, u) = (x3, y) ∩ (xy, u)
= (x3u, xy, yu) genus 3

12. J = (x3, y) ∩ (x, u) ∩ (y, v) = (x3v, y) ∩ (x, u)
= (x3v, xy, yu) genus 3

13. J = (x3, y) ∩ (x, u) ∩ (u, v) = (x3, y) ∩ (xv, u)
= (x3v, x3u, xyv, yu) genus 1

14. J = (x3, y) ∩ (y, u) ∩ (y, v) = (x3uv, y) C.M.
15. J = (x3, y) ∩ (y, u) ∩ (u, v) = (x3u, y) ∩ (u, v)

= (x3u, yu, yv) genus 3

a = 2, b = 2 ⇒ t = 2.

16. J = (x2, y2) ∩ (x, u) = (x2, y2x, y2u) genus 2
17. J = (x2, y2) ∩ (u, v) = (x2u, x2v, y2u, y2v) genus 0

a = 2, b = 1 ⇒ 3 ≤ t ≤ 4, q1 = (x2, y).
multJ(p2) = 2 ⇔ t = 3.

18. J = (x2, y) ∩ (x2, u) ∩ (x, v) = (x2, yu) ∩ (x, v)
= (x2, xyu, yuv) genus 2

19. J = (x2, y) ∩ (x2, u) ∩ (y, u) = (x2, yu) ∩ (y, u)
= (x2u, x2y, yu) genus 2

20. J = (x2, y) ∩ (x2, u) ∩ (y, v) = (x2, yu) ∩ (y, v)
= (x2y, x2v, yu) genus 2

21. J = (x2, y) ∩ (x2, u) ∩ (u, v) = (x2, yu) ∩ (u, v)
= (x2u, x2v, yu) genus 2

22. J = (x2, y) ∩ (x, u2) ∩ (x, v) = (x2, y) ∩ (x, u2v)
= (x2, xy, yu2v) genus 3

23. J = (x2, y) ∩ (x, u2) ∩ (y, u) = (x2u, y) ∩ (x, u2)
= (x2u, xy, yu2) genus 2

24. J = (x2, y) ∩ (x, u2) ∩ (y, v) = (x2v, y) ∩ (x, u2)
= (x2v, yx, yu2) genus 2

25. J = (x2, y) ∩ (x, u2) ∩ (u, v) = (x2, xy, yu2) ∩ (u, v) no deg.2 element,
= (x2u, x2v, xyu, xyv, yu2) exluded by (iii)
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26. J = (x2, y) ∩ (y2, u) ∩ (x, u) = (x2u, y2, yu) ∩ (x, u)
= (x2u, y2x, yu) genus 2

27. J = (x2, y) ∩ (y2, u) ∩ (x, v) = (x2u, y2, yu) ∩ (x, v) no deg.
= (x2u, xy2, xyu, y2v, yuv) 2 element

28. J = (x2, y) ∩ (y2, u) ∩ (y, v) = (x2u, y2, yu) ∩ (y, v)
= (x2uv, y2, yu) genus 3

29. J = (x2, y) ∩ (y2, u) ∩ (u, v) = (x2u, y2, yu) ∩ (u, v)
= (x2u, yu, y2v) genus 2

30. J = (x2, y) ∩ (y, u2) ∩ (x, u) = (x2u2, y) ∩ (x, u)
= (xy, x2u2, yu) genus 3

31. J = (x2, y) ∩ (y, u2) ∩ (x, v) = (x2u2, y) ∩ (x, v)
= (xy, x2u2, yv) genus 3

32. J = (x2, y) ∩ (y, u2) ∩ (y, v) = (x2u2v, y) C.M.
33. J = (x2, y) ∩ (y, u2) ∩ (u, v) = (x2u2, y) ∩ (u, v)

= (x2u2, yu, yv) genus 3
34. J = (x2, y) ∩ (u2, v) ∩ (x, u) = (x2u2, x2v, yu2, yv) ∩ (x, u) no deg. 2

= (x2u2, x2v, yu2, xyv, yuv) element
35. J = (x2, y) ∩ (u2, v) ∩ (x, v) = (x2u2, x2v, yu2, yv) ∩ (x, v)

= (x2u2, x2v, xyu2, yv) genus 1
36. J = (x2, y) ∩ (u2, v) ∩ (y, u) = (x2u, y) ∩ (u2, v)

= (x2u2, x2uv, yu2, yv) genus 1
37. J = (x2, y) ∩ (u2, v) ∩ (y, v) = (x2v, y) ∩ (u2, v)

= (x2v, yu2, yv) genus 2

t = 4 ⇒ q2 = p2, q3 = p3, q4 = p4.

38. J = (x2, y) ∩ (x, u) ∩ (x, v) ∩ (y, u) = (x2u, y) ∩ (x, uv)
= (xy, x2u, yuv) genus 2

39. J = (x2, y) ∩ (x, u) ∩ (x, v) ∩ (u, v) no deg.
= (x2, xy, yu) ∩ (xu, v) = (x2u, x2v, xyu, xyv, yuv) 2 element

40. J = (x2, y) ∩ (x, u) ∩ (y, u) ∩ (y, v)
= (x2uv, y) ∩ (x, u) = (x2uv, xy, yu) genus 3

41. J = (x2, y) ∩ (x, u) ∩ (y, u) ∩ (u, v)
= (x2, y) ∩ (xyv, u) = (xyv, x2u, yu) genus 2

42. J = (x2, y) ∩ (x, u) ∩ (y, v) ∩ (u, v)
= (x2v, y) ∩ (xv, u) = (x2v, xyv, yu) genus 2

43. J = (x2, y) ∩ (y, u) ∩ (y, v) ∩ (u, v)
= (x2uv, y) ∩ (u, v) = (x2uv, yu, yv) genus 3
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a = 1 ⇒ b = 1 and t = 5, i.e. intersections of (x, y) with four from
(x, u), (x, v), (y, u), (y, v), (u, v).

44. J = (x, y) ∩ (x, u) ∩ (x, v) ∩ (y, u) ∩ (y, v)
= (x, yuv) ∩ (y, uv) = (xy, xuv, yuv) genus 2

45. J = (x, y) ∩ (x, u) ∩ (x, v) ∩ (y, u) ∩ (u, v)
= (x, yuv) ∩ (yv, u) = (xyv, xu, yuv) genus 2

46. J = (x, y) ∩ (x, u) ∩ (y, u) ∩ (y, v) ∩ (u, v)
= (xv, y) ∩ (xyv, u) = (xyv, xuv, yu) genus 2

Case II: p1 = p2 = (x, y). Then multJ(p1) ≥ 3.

multJ(p1) = 5 ⇒ t = 2.

47. J = (x4, y) ∩ (x, y2) = (x4, y2, xy) genus 3
48. J = (x3, y) ∩ (x2, y2) = (x3, yx2, y2) genus 2
49. J = (x3, y) ∩ (x, y3) = (x3, xy, y3) genus 2

multJ(p1) = 4 ⇒ q1 ∩ q2 = (x3, y) ∩ (x, y2) and t = 3.

50. J = (x3, y) ∩ (x, y2) ∩ (x, u) = (x3, y2, xy) ∩ (x, u)
= (x3, xy, y2u) genus 2

51. J = (x3, y) ∩ (x, y2) ∩ (y, u) = (x3, y2, xy) ∩ (y, u)
= (x3u, xy, y2) genus 3

52. J = (x3, y) ∩ (x, y2) ∩ (u, v) = (x3, y2, xy) ∩ (u, v) no deg. 2
= (x3u, x3v, y2u, y2v, xyu, xyv) element

multJ(p1) = 3 ⇒ q1 ∩ q2 = (x2, y) ∩ (x, y2).

53. J = (x2, y) ∩ (x, y2) ∩ (x2, u) = (x2, yu) ∩ (x, y2)
= (x2, xyu, y2u) genus 2

54. J = (x2, y) ∩ (x, y2) ∩ (x, u2) = (x2, y) ∩ (x, y2u2)
= (x2, xy, y2u2) genus 3

55. J = (x2, y) ∩ (x, y2) ∩ (u2, v) = (x2, xy, y2) ∩ (u2, v) no deg. 2
= (x2u2, x2v, xyu2, xyv, y2u2, y2v) element

56. J = (x2, y) ∩ (x, y2) ∩ (x, u) ∩ (x, v)
= (x2, y) ∩ (x, y2uv) = (x2, xy, y2uv) genus 3

57. J = (x2, y) ∩ (x, y2) ∩ (x, u) ∩ (y, u)
= (x2u, y) ∩ (x, y2u) = (x2u, xy, y2u) genus 2

58. J = (x2, y) ∩ (x, y2) ∩ (x, u) ∩ (y, v)
= (x2v, y) ∩ (x, y2u) = (x2v, xy, y2u) genus 2

59. J = (x2, y) ∩ (x, y2) ∩ (x, u) ∩ (u, v) no deg. 2
= (x2, xy, y2) ∩ (u, xv) = (x2u, x2v, xyu, xyv, y2u) element
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