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VECTOR RANDOM STABLE MEASURES

AND RANDOM INTEGRALS

DANG HUNG THANG

Abstract. In this paper, the definition and basic properties of Banach space-
valued symmetric independently scattered stable measures including random
Gaussian measures are presented. Random integrals of real-valued determin-
istic functions with respect to these random measures are also investigated.

1. Introduction

Let (T,A) be a measurable space. A mapping M : A −→ L0(Ω) is called
random measure on (T,A) if for every sequence (An) of disjoint sets from A the
r.v.’s M(An) are independent and

M

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

M(An) in L0(Ω).

The study of random measures and the random integral of the form
∫

f dM ,
where f is a real-valued function defined on T , has been carried out by several
authors, see, e.g., [12, 7, 8, 3, 5]. Rosinski [6] considered the case in which the
integrand f takes values in a Banach space X.

Vector random measures arise naturally as a Banach space generalization of
random measures. In this setting, for each A ∈ A,M(A) is no longer a real-
valued random variable but a random variable with values in a Banach space X.
Some aspects of vector random measures and the random integral of real-valued
functions with respect to vector random measures were discussed in [9, 10].

In this paper we are concerned with the study of the vector symmetric random
stable measures and random integral with respect to them. Definition and prop-
erties of vector symmetric random stable measures are introduced in Section 2,
where each X-valued p-stable random measure Zp is associated with a determin-
istic vector measure Qp taking values in a certain Banach space. In Section 3 we
deal with the random integral of the form

∫

fdZp, where f is a real-valued func-
tion defined on T . Conditions for the integrability of a function f with respect
to Zp is expressed in terms of the vector measure Qp (Theorem 3.1 and Theorem
3.4). In particular, if X is of type p then f is Zp-integrable if and only if |f |p is
Qp-integrable.
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2. Vector symmetric random stable measures

Let X be a separable Banach space and (T,A) be a measurable space. A
mapping M : A −→ L0

X(Ω) is called an X-valued symmetric random measure
on (T,A) if for every sequence (An) of disjoint sets from A the r.v.’s M(An) are
independent, symmetric and

M

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

M(An) in L0
X(Ω)

An X-valued symmetric random measure F is said to be p-stable (0 < p ≤ 2) if
for each A ∈ A, F (A) is a p-stable random variable. In this paper, we always
denote an X-valued symmetric p-stable random measure by Zp. For brevity we
write Z for Z2.

Definition 2.1 Let Z be an X-valued symmetric Gaussian random measure. A
function on A whose value on a set A ∈ A is the covariance operator of the
Gaussian r.v. Z(A) is called the characteristic measure of Z and denoted by Q.

In order to study properties of the characteristic measure Q it is useful to
introduce on L2

X(Ω) a concept of inner product whose values are no longer scalar
but operators. For ξ, η ∈ L2

X(Ω) the inner product of ξ and η, denoted by [ξ, η],
is an element of L(X ′,X) defined by

[ξ, η]a =

∫

ξ(ω)(η(ω), a)dP, ∀a ∈ X ′.

Here the Bochner integral exists since ξ, η belong to L2
X(Ω).

Let us recall the notion of nuclear operators. An operator T ∈ L(X ′,X)
is called nuclear if there exist two sequences (xn) ⊂ X”, (yn) ⊂ X such that
∑

‖xn‖‖yn‖ < ∞ and

Ta =
∑

(a, xn)yn, ∀a ∈ X ′.(1)

If T is a nuclear operator then the nuclear norm of T is defined by

‖T‖nuc = inf
{

∑

‖xn‖‖yn‖
}

,

where the infimum is taken over all sequences (xn) ⊂ X”, (yn) ⊂ X satisfying
(1).

The nuclear operators from X ′ into X form a Banach space under the nuclear
norm and denoted by N(X ′,X). The intersection of N(X ′,X) and L+(X ′,X) is
denoted by N+(X ′,X).

Theorem 2.1.

1. [ξ, η] is a nuclear operator and

‖[ξ, η‖nuc. ≤ ‖ξ‖L2
‖η‖L2

.(2)
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2. [ξ, η] = [η, ξ]∗

[ξ, η1 + η2] = [ξ, η1] + [ξ, η2]
[η1 + η2, ξ] = [η1, ξ] + [η2, ξ]
[tξ, η] = [ξ, tη] = t[ξ, η] ∀t ∈ R.

3. [ξ, ξ] ∈ L+(X ′,X) and ‖[ξ, ξ‖nuc. ≤ ‖ξ‖2
L2

.
4. If X is of type 2 then there exists a constant C > 0 such that

‖ξ‖2
L2

≤ C‖[ξ, ξ‖nuc

for all X-valued symmetric Gaussian r.v.’s ξ.
5. If lim ξn = ξ, lim ηn = η in L2

X(Ω) then

lim[ξn, ηn] = [ξ, η] in N(X ′,X).

Proof. 1) Let ξ, η be simple r.v.’s

ξ =
∑

xiIAi
, η =

∑

yiIAi

where IA denotes the characteristic function of the set A. We have

[ξ, η]a =
n
∑

i=1

xi(yi, a)P (Ai).

Hence

‖[ξ, η]‖nuc ≤

n
∑

i=1

‖xi‖.‖yi‖P (Ai) =

∫

‖ξ‖.‖η‖dP ≤ ‖ξ‖L2
‖η‖L2

.

Now let ξ, η be arbitrary elements in L2
X(Ω). There exist simple r.v.’s (ξn), (ηn)

such that ξn → ξ and ηn → η in L2
X(Ω). We have

‖[ξn, ηn]‖nuc ≤ ‖ξn‖L2
‖ηn‖L2

(3)

and

‖[ξn, ηn] − [ξm, ηm]‖nuc ≤ ‖ξn‖L2
‖ηn − ηm‖L2

+ ‖ηm‖L2
‖ξn − ξm‖L2

which converges to 0 as m,n → ∞. Since ([ξn, ηn]a, b) → ([ξ, η]a, b) for all
a, b ∈ X ′ it follows that [ξ, η] is a nuclear operator. Letting n → ∞ in (3) we get
(2).

The assertions 2), 3) and 5) are easy to prove. The assertion 4) follows imme-
diately from a result of Chevet (see [1]).

We call [ξ, ξ] the covariance operator of the X-valued r.v. ξ ∈ L2
X(Ω).

Let G(X) denote the set of covariance operators of X-valued Gaussian sym-
metric r.v.’s. In view of Theorem 2.1 we have the inclusion G(X) ⊂ N+(X ′,X).
Moreover, it was shown in [1] that the equality G(X) = N+(X ′,X) holds if and
only if X is type 2.

Theorem 2.2. The characteristic measure Q is a function from A into G(X)
having the following properties

1. [Z(A), Z(B)] = Q(A,B) for all A,B ∈ A.
2. Q is σ-additive in the nuclear norm.
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3. Q is non-negative in the sense that for all sequences (Ak)
n
1 ⊂ A and all

sequences (ak)
n
1 ∈ X ′ we have

∑

i

∑

j

(Q(AiAj)ai, aj) ≥ 0.

Proof. 1) If A,B are disjoint then Z(A) and Z(B) are independent symmetric so
that [Z(A), Z(B)] = 0. For arbitrary sets A,B ∈ A by Theorem 2.1 we have

[Z(A), Z(B)] = [Z(AB) + Z(A \ AB), Z(AB) + Z(B \ AB)]

= [Z(AB), Z(AB)] = Q(AB).

2) Let A =
∞
⋃

n=1
An where (An) are disjoint sets. By Hoffmann-Jorgensen’s

theorem (see [3] Theorem 5.5) Z(A) =
∞
∑

n=1
Z(An) in L2

X(Ω). Hence by Theo-

rem 2.1

Q(A) = [Z(A), Z(A)] = lim
n

[

n
∑

k=1

Z(Ak),

n
∑

k=1

Z(Ak)

]

= lim
n

n
∑

k=1

[Z(Ak), Z(Ak)]

=

∞
∑

k=1

Q(Ak) in N(X ′,X).

3) We have
∑

i

∑

j

(Q(AiAj)ai, aj) =
∑

i

∑

j

([Z(Ai), Z(Aj)]ai, aj)

∑

i

∑

j

∫

(Z(Ai), ai)(Z(Aj), aj)dP = E

[

n
∑

i=1

(Z(Ai), aj)

]2

≥ 0.

A characterization of the class of characteristic measures of vector symmetric
Gaussian random measures is given by the following theorem.

Theorem 2.3. Let Q be a function from A into G(X). The following assertions
are equivalent:

1. Q is a characteristic measure of some X-valued symmetric Gaussian random
measure.

2. Q is non-negative definite and σ-additive in the nuclear norm.
3. Q is non-negative definite and T -weakly σ-additive in the following sense:

For each a ∈ X ′ and each sequence (An) of disjoint sets from A we have
(

Q

(

∞
⋃

n=1

An

)

a, a

)

=
∞
∑

i=1

(Q(An)a, a).
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Proof. By Theorem 2.2 only the implication 3) → 1) needs a proof. For g =
(A, a), h = (B, b), where A,B ∈ A, a, b ∈ X ′ we define the function K(g, h) by
K(g, h) = (Q(AB)a, b). From the assumption it follows that K is non-negative
definite and symmetric. Hence there exists a Gaussian process f(A, a) indexed
by the set A× X ′ such that

Ef(A, a)f(B, b) = (Q(AB)a, b) .(4)

For each fixed A ∈ A, define the mapping TA : X ′ → L2(Ω) by TAa = f(A, a).
We claim that TA is linear. Indeed,

E[TA(a + b) − TAa − TBb]2 = (Q(A)(a + b), a + b) + (Q(A)a, a) + (Q(A)b, b)

+ 2(Q(A)a, b) − 2(Q(A)(a + b), a)

− 2(Q(A)(a + b), b) = 0,

which shows that TA(a + b) = TAa + TBb. Similarly, TA(ta) = tTAa for each
t ∈ R. Since E|TAa|2 = (Q(A)a, a) and Q(A) ∈ G(X), TA is decomposed by an
X-valued symmetric Gaussian r.v. denoted by Z(A) i.e.

∀a ∈ X ′ TAa = (Z(A), a) a.s.

Now we show that the mapping A 7→ Z(A) yields an X-valued symmetric Gauss-
ian random measure with the characterization measure Q. Indeed,we have

[Z(A), Z(A)] = Q(A).

Further, for disjoint sets (An) ⊂ A and arbitrary elements (an) ⊂ X ′ by (4) the
Gaussian r.v.’s (Z(Ak), ak) are uncorrelated so that they are independent. Hence
so are the r.v.’s Z(An). For each a ∈ X ′ we have

[

(Z(A), a) −

n
∑

k=1

(Z(Ak), a)

]2

= (Q(A)a, a) −

n
∑

k=1

(Q(Ak)a, a)

which tends to 0 as n → ∞. Consequently, (Z(A)a, a) =
n
∑

k=1

(Z(Ak), a) in L2(Ω).

According to the Ito-Nisio theorem we conclude that

Z(A) =

∞
∑

k=1

Z(Ak) in L0
X(Ω).

Example 2.1. Let H : T → L+(X ′,X) be a function on T with values in
L+(X ′,X) such that H is T -weakly integrable w.r.t. a finite positive measure µ on
(T,A) in the sense that for each A ∈ A there exists an operator HA ∈ L+(X ′,X)
such that

(HAa, a) =

∫

A

(H(t)a, a) dµ, ∀a ∈ X ′.

We shall prove that if HT ∈ G(X) then there exists an X-valued symmetric
Gaussian random measure Z with the characteristic measure Q given by Q(A) =
HA. Indeed, since (HAa, a) ≤ (HT a, a), ∀a ∈ X ′, by the key property of Gaussian
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covariance operators (see [4]) it follows that HA ∈ G(X). Put Q(A) = HA. For
(Ak)

n
k=1 ⊂ A and (ak)

n
k=1 ⊂ X ′ we have

n
∑

i,j=1

(Q(AiAj)ai, aj) =

n
∑

i,j=1

∫

T

(

H(t)IAi
(t)ai, IAj

(t)aj

)

dµ(t)

=

∫

t

(H(t)a(t), a(t)) dµ(t) ≥ 0,

where a(t) =
n
∑

i=1
IAi

(t)ai. Hence Q is non-negative definite. The T -weak σ-

additivity of Q follows from the T -weak integrability of H. Thus the assertion
follows from Theorem 2.3.

Example 2.2. (Vector Wiener random measures) Given an operator R ∈ G(X),
consider a function H given by H(t) = R, ∀t ∈ T . Clearly, H is T -weakly
integrable and HA = µ(A)R. By Example 2.1 there exists an X-valued symmetric
Gaussian random measure W such that for each A ∈ A, the covariance operator
of W (A) is µ(A)R. We call W the X-valued Wiener random measure with the
parameters (µ,R).

Next, we consider the case 0 < p < 2. Let S be the unit sphere of X, endowed
with the metric generated by the norm of X. Let M(S) denote the set of all
real-valued measures of bounded variation on S and M+(S) denote the set of
finite non-negative symmetric measures on S. M(S) is a Banach space under
the usual operations of addition and multiplication by numbers. The norm of a
measure λ ∈ M(S) is given by ‖λ‖M = |λ|(S), where |λ| stands for the variation
of λ.

It is known (see [4], Th. 6.4.4) that for each X-valued symmetric p-stable r.v.
ξ there exists a unique finite symmetric measure Γξ ∈ M+(S) such that the
characteristic function of ξ is given by

E exp [i(ξ, a)] = exp

{

−

∫

S
|(x, a)|pdΓξ

}

.

From now on, Γξ is called the spectral measure of ξ.

Denote by Sp(X) the set of spectral measures of X-valued symmetric p-stable
r.v.’s. We have the inclusion Sp(X) ⊂ M+(S). Moreover, it is known that (see
[4]) Sp(X) coincides with M+(S) if and only if X is of stable type p.

Some useful properties of the correspondence ξ 7→ Γξ are listed in the following
theorem.

Theorem 2.4.

1. Γtξ = |t|pΓξ ∀t ∈ R.
2. There exists a constant C > 0 depending only on r, p, (0 < r < p) such that

‖Γξ‖ ≤ C {E‖ξ‖r}p/r .
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Moreover, if X is of stable type p then there exists a constant K > 0 de-
pending only on r, p such that

{E‖ξ‖r}p/r ≤ K‖Γξ‖.

3. Let (ξn)be a sequence of X-valued symmetric independent p-stable r.v.’s such

that the series
∞
∑

n=1
ξn converges to a X-valued r.v. ξ in L0

X(Ω). Then we

have Γξ =
∞
∑

n=1
Γξn

in M(S) and we have

‖Γξ‖ =

∞
∑

n=1

‖Γξn
‖.

Proof. The assertion 1) is easy to prove. The assertion 2) is an immediate con-
sequence of Corollary 7.3.5 and Proposition 7.5.4 in [4]. Now we prove 3). Put

xn =
n
∑

i=1
ξi. It is easy to see that Γxn

=
n
∑

i=1
Γξi

. Since Γξi
∈ M+(S) we have

‖Γxn
‖ =

n
∑

i=1

‖Γξi
‖,(5)

‖Γxn
− Γxm

‖ =
n
∑

i=m+1

‖Γξi
‖.(6)

Since xn converges to ξ in probability by Proposition 6.6.5 in [4] Γxn
converges

weakly to Γξ which implies that ‖Γxn
‖ converges to‖Γξ‖ i.e.

‖Γξ‖ =
∞
∑

n=1

‖Γξn
‖.

From this and (6) it follows that Γxn
converges in M(S). The limit must be Γξ

since Γxn
converges weakly to Γξ.

Definition 2.2. Let Zp be an X-valued symmetric p-stable random measure. A
function on A, whose value on a set A ∈ A is the spectral measure of Zp(A) is
called a characteristic measure of Zp and it is denoted by Qp.

Theorem 2.5. The characteristic measure Qp of Zp is a mapping from A into
Sp(X) possessing the following properties:

1. Qp is σ-additive in the norm of M(S). Thus Qp is a vector measure with
values in the Banach space M(S).

2. Qp is of bounded variation and the variation |Qp| is given by

|Qp|(A) = ‖Qp(A)‖M.

3. If X is of stable type p then there exists a constant K > 0 such that

P{‖Zp(A)‖ > t} ≤ Kt−p|Qp|(A), ∀A ∈ A, ∀t ∈ R.
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Proof. The assertion 1) follows easily from Theorem 2.4. In order to prove 2) let
{B1, B2, . . . , Bn} be a finite partition of A. Then

m
∑

i=1

‖Qp(Bi)‖ =
∥

∥

m
∑

i=1

Qp(Bi)
∥

∥ = ‖Qp(A)‖.

Hence |Qp|(A) = ‖Qp(A)‖ as claimed. Finally, by Propositions 7.5.4 and 7.3.1 in
[4] we get

P{‖Zp(A)‖ > t} ≤ Kt−p‖Qp(A)‖ = Kt−p|Qp|(A),

where K is a constant.

3. Random integral for real-valued deterministic functions

The stochastic integral of real-valued deterministic functions w.r.t. vector
random measures was investigated in [9]. Let us recall the definition. Let M be an
X-valued symmetric random measure with the control measure µ. If f : T → R

is a simple function, f =
n
∑

i=1
tiIAi

then the random integral of f w.r.t. M is

∫

fdM =
n
∑

i=1
tiM(Ai). A function f is said to be M -integrable if there exists a

sequence of simple functions (fn) such that lim fn(t) = f(t) µ − a.s. and the
sequence {

∫

fndM} converges in L0
X(Ω). If f is M -integrable then we put

∫

T

f dM = p − lim

∫

T

fn dM.

The set of M -integrable functions is denoted by LX(M).

Let Z be an X-valued symmetric Gaussian random measure with the charac-
teristic measure Q. We notice that there exists a control measure for Z. Indeed,
by Bartle-Dunford-Schartz’s theorem (see [2], Corollary 6) there is a finite non-
negative measure µ such that Q(A) = 0 whenever µ(A) = 0. Clearly, µ is a
control measure for Z.

Theorem 3.1.

1. If functions f and g are Z-integrable then fg is Q-integrable and for each
A ∈ A we have





∫

A

fdZ,

∫

A

gdZ



 =

∫

A

fgdQ.

2. A function f is Z-integrable if and only if the function |f |2 is Q-integrable
and

∫

|f |2 dQ ∈ G(X).
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Proof. 1) By definition there exist simple functions (fn) and (gn) such that
lim fn = f and lim gn = g for µ-almost all t and

p − lim

∫

A
fndZ =

∫

A
fdZ, p − lim

∫

A
gndZ =

∫

A
gdZ.

Since
∫

A fndZ and
∫

A gndZ are Gaussian symmetric r.v.’s, they also converge

in L2
X(Ω) (see [3]). It is easy to check that

[
∫

A
fndZ,

∫

A
gndZ

]

=

∫

A
fngndQ.

By Theorem 2.1 it follows that
∫

A fngndQ converges to
[∫

A fdZ,
∫

A gdZ
]

in
N(X ′,X). Sin fngn converges to fg µ−a.e. we conclude that fg is Q-integrable
and for each A ∈ A we have

[
∫

A
fdZ,

∫

A
gdZ

]

=

∫

A
fgdQ.

2) The necessity follows from what has been proved. Conversely, suppose |f |2 is
Q-integrable and inf |f |2dQ ∈ G(X). Let

An = {t : |f(t)| ≤ n}, Bn = An \ An−1, fn = IAn
f.

Since fn is bounded it is Z-integrable (see [9] Theorem 2.4). Put xn =
∫

fndZ,

Sn =
∫

gndZ =
n
∑

i=1
xi where gn = IAn

f . Since (Bn) are disjoint the r.v.’s (xn)

are independent and symmetric. The characteristic function of Sn is

exp

{

−

n
∑

i=1

(

[

∫

|fk|
2dQ]a, a

)

}

= exp

{

−

(

[

∫

An

|f |2dQ]a, a

)}

,

which converges to exp
{

−
(

[
∫

|f |2dQ]a, a
)}

when n → ∞. Therefore, by the

Ito-Nisio theorem the sequence (Sn) converges in L0
X(Ω). Since lim gn = f µ-a.e.

from Theorem 2.3 in [9] we conclude that f is Z-integrable.

Corollary 3.1. Suppose that X is of type 2. Then

1. A function f is Z-integrable if and only if |f |2-is Q-integrable.
2. The inclusion L2(T,A, |Q|) ⊂ LX(Z) holds. Moreover, there exists a con-

stant K > 0 such that

E‖

∫

fdZ‖2 ≤ K

∫

|f |2d|Q|

for all f ∈ L2(T,A, |Q|), where |Q| stands for the variation of Q.

Proof. The assertion 1) is a direct consequence of Theorem 3.1 and the fact that
G(X) = N+(X ′,X) provided X is of type 2. We prove the assertion 2). Let f

be a simple function, f =
∑

tiIAi
. Since X is of type 2 we have

E‖

∫

fdZ‖2 = E‖
∑

tiZ(Ai)‖
2 ≤ C1

∑

|ti|
2E‖Z(Ai)‖

2,
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where C1 is a constant. By Theorem 2.1 it follows that

E‖Z(Ai)‖
2 ≤ C2‖Q(Ai)‖nuc ≤ C2|Q|(Ai),

where C2 is a constant. From this we obtain

E‖

∫

fdZ‖2 ≤ C1C2

∑

|ti|
2|Q|(Ai) = K

∫

|f |2d|Q|,

where K = C1C2. Since the set of simple functions is dense in L2(T,A, |Q|) the
assertion 2) follows.

Theorem 3.2. Let W be a X-valued Wiener random measure with the para-
meters (µ,R) (Example 2.2). A function f is W -integrable if and only if f ∈
L2(T,A, µ). Moreover, for any orthonormal basis (en) in L2(T,A, µ) we have

1. {
∫

endW} is a sequence of X-valued independent symmetric Gaussian r.v.’s
with the same covariance operator R.

2. For each f ∈ L2(T,A, µ) we have

∫

fdW =
∞
∑

n=1

(f, en)

∫

en dW(7)

where (., .) stands for the scalar product in L2(T,A, µ). The series (7) con-
verges a.s. in the norm topology of X.

Proof. Only the assertions 1) and 2) need to be proved. We have by Theorem 3.1
[ ∫

endW,
∫

emdW
]

= (em, en)R. Thus the assertion 1) is proved. Now, for each
a ∈ X ′

E

[

(

∫

fdW, a
)

−
∑

(f, ek)
(

∫

ekdW, a
)

]2

= (Ra, a)

[

∫

|f |2dµ −

n
∑

k=1

|(f, ek)|
2

]

which converges to 0 as n → ∞. Hence by the Ito-Nisio theorem the expansion
(7) is proved.

As an application of the above theorem, let us investigate the possibility of
representing an X-valued symmetric Gaussian process as a Gaussian random
series. Let ξ(u), u ∈ I, be an X-valued symmetric Gaussian process indexed by
the parameter I. By Theorem 2.7 in [11] we get the following statement:

There exists a sequence (αn) of real-valued Gaussian i.i.d. random variables
and a sequence (fn(u)) of X-valued deterministic functions defined on I such that
for each u ∈ I we have

ξ(u) =

∞
∑

n=1

αnfn(u) a.s.

in the norm of X.

Now it is natural to ask if there exists a sequence (αn) of X-valued Gauss-
ian i.i.d. random variables and a sequence (fn(u)) of real-valued deterministic
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functions defined on I such that for each u ∈ I we have

ξ(u) =

∞
∑

n=1

αnfn(u) a.s.(8)

in norm of X.

Let K(u, v) = [ξ(u), ξ(v)] be the covariance function of ξ. K(u, v) takes values
in N+(X ′,X) and non-negative (Theorem 2.2). It is easy to check that if ξ can
be represented in the form (8) then

K(u, v) = k(u, v)R,(9)

where k(u, v) is a real-valued non-negative function, and R is a covariance oper-
ator. Conversely we have

Theorem 3.3. If the covariance function K(u, v) of ξ is of the form (9) then
there exist a sequence (αn) of X-valued Gaussian i.i.d. random variables and a
sequence (fn(u)) of real-valued deterministic functions defined on I such that ξ

is equivalent to the process η defined by

η(u) =

∞
∑

n=1

αnfn(u) a.s.

Proof. Since k(u, v) is non-negative there exist a measurable (T,A, µ) and a fam-
ily (hu) , u ∈ I of functions in L2(T,A, µ) such that

k(u, v) =

∫

T
hu(t)hv(t) dµ(t).

Let W be an X-valued Wiener random measure with the parameter (µ,R). Define
an X-valued Gaussian process η by

η(u) =

∫

T
hu(t) dW (t).

Then by Theorem 3.1

[η(u), η(v)] =
(

∫

huhv dµ
)

R = k(u, v)R = K(u, v).

Two Gaussian processes η and ξ the same covariance function so they have same
finite dimensional distributions. From (7) we get

η(u) =

∫

hudW =
∞
∑

n=1

(hu, en)

∫

en dW a.s.

Put αn =
∫

endW , fn(u) = (hu, en) we obtain the desired claim.

Now we consider the case 0 < p < 2. Clearly, the variation |Qp| of the charac-
teristic measure Qp of Zp is a control measure for Zp.
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Theorem 3.4. A function f is Zp-integrable if and only if the function |f |p is
Qp-integrable and

∫

|f |p dQp ∈ Sp(X).

In this case,
∫

|f |p dQp is exactly the spectral measure of the X-valued symmetric
p-stable r.v.

∫

fdZp.

To prove Theorem 3.4 we shall need the following lemmas.

Lemma 1. Let (ξn) be a sequence of X-valued symmetric p-stable r.v.’s such
that ξn converges to ξ in L0

X(X). Then for each r < p the sequence (ξn) also
converges to ξ in Lr

X(Ω).

Proof. It follows from Proposition 7.3.11 in [4].

Lemma 2. Let g be non-negative, |Qp|-integrable. Then g is Qp-integrable and
we have

∥

∥

∥

∫

gdQp

∥

∥

∥

M

=

∫

g d|Qp|.

Proof. It is easy to see that the lemma holds for simple functions g. Now let g be
non-negative, |Qp|-integrable. There exists an increasing sequence (gn) of simple
functions converging to g everywhere and

∫

(g − gn)d|Qp| → 0. Then
∥

∥

∥

∫

A

gndQp −

∫

A

gmdQp‖M =

∫

A
|gn − gm|d|Qp| → 0 as m,n → 0.

Hence by the definition of the integral w.r.t. vector measure we infer that g is
Qp-integrable and

∥

∥

∥

∫

gdQp

∥

∥

∥

M

= lim
∥

∥

∥

∫

gndQp

∥

∥

∥

M

= lim

∫

gnd|Qp| =

∫

g d|Qp|.

Proof of Theorem 3.4. Suppose that f is a simple function f =
∑

tiIAi
. Put

ξi = Zp(Ai), ξ =
∫

fdZp =
∑

tiξi. By Theorem 2.4 the spectral measure of ξ is

Γξ =
∑

Γtiξi
=
∑

|ti|
pΓxii =

∑

|ti|
pQp(Ai) =

∫

‖f |pdQp.(10)

In view of Lemma 2 and Theorem 2.4 we get
∫

|f |pd|Qp| = ‖Γξ‖ ≤ C{E‖ξ‖r}p/r = C{E‖

∫

fdZp‖
r}p/r,(11)

where C is a constant.

Let f be an arbitrary Zp-integrable function. There exist simple functions (fn)
such that lim fn = f |Qp|-a.e and

∫

fndZp converges to
∫

fdZp in L0
X(Ω). By

Lemma 1, the inequality (11) and Fatou’s Lemma we get
∫

|f |pd|Qp| ≤ C
{

E‖

∫

fdZp‖
r
}p/r

.(12)
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Thus |f |p is |Qp|-integrable so that it is Qp-integrable by Lemma 2.

Finally, we shall show that
∫

|f |pdQp is the spectral measure of
∫

fdZp. Indeed,
there exist simple functions (fn) such that |fn(t)| ≤ |f(t)| and lim fn(t) = f(t)
for all t. By the dominated convergence theorem for vector measure we have

lim

∫

|fn|
pdQp =

∫

|f |p dQp in M(S).(13)

On the other hand, by the dominated convergence theorem for vector random
measure (see [9] Cololllary 3.4) we get

lim

∫

fndZp =

∫

f dZp in L0
X(Ω).

Thus the spectral measure of
∫

fndZp converges weakly to that of
∫

fdZp. From
this and together with (10) and (13) it follows that

∫

|fn|
pdQp is precisely the

spectral measure of
∫

fdZp.

In order to prove the converse, let

An = {t : |f(t) ≤ n}, Bn = An \ An−1, fn = IBn
f.

Since fn is bounded,it is Zp-integrable (see [9]). Put

xn =

∫

fndZp, Sn =

∫

gndZp =

n
∑

i=1

xi

where gn = IAn
f . Since (Bn) are disjoint the r.v.’s (xn) are independent and

symmetric. The characteristic function of Sn is exp
{

−
∫

S |(x, a)|pdΓn

}

where

Γn =
∫

An
|f |pdQp which converges to exp

{

−
∫

S |(x, a)|pdΓ
}

where Γ =
∫

|f |pdQp.
The rest of the proof is identical to the last part of the proof of Theorem 3.1.

Theorem 3.5. Suppose that X is of stable type p. Then

1. A function f is Zp-integrable if and only if |f |p is Qp-integrable.
2. A function f is Zp-integrable if and only if |f |p is |Qp|-integrable. Moreover,

there exist a constant K > 0 such that

P

{

‖

∫

fdZp‖ > t

}

≤ Kt−p

∫

|f |pd|Qp|

for all f ∈ Lp(T,A, |Qp|) and all t ∈ R.

Proof. The assertion 1) is a direct consequence of Theorem 3.4 and the fact that
Sp(X) = M+(S) provided that X is of stable type p. Now we prove 2). If
f ∈ Lp(T,A, |Qp|) then |f |p is Qp-integrable so f is Zp-integrable. The con-
verse follows from (12). Finally, by using Lemma 2 of Theorem 3.4, together
Proposition 7.5.4 and 7.3.1 in [4] we get

P

{

‖

∫

fdZp‖ > t

}

≤ Kt−p

∥

∥

∥

∥

∫

|f |pdQp

∥

∥

∥

∥

M

= Kt−p

∫

|f |pd|Qp|,

where K is a constant.
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