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VECTOR RANDOM STABLE MEASURES
AND RANDOM INTEGRALS

DANG HUNG THANG

ABSTRACT. In this paper, the definition and basic properties of Banach space-
valued symmetric independently scattered stable measures including random
Gaussian measures are presented. Random integrals of real-valued determin-
istic functions with respect to these random measures are also investigated.

1. INTRODUCTION

Let (7,.A) be a measurable space. A mapping M : A — Ly(Q) is called
random measure on (7, A) if for every sequence (A,,) of disjoint sets from A the
r.v.’s M(A,,) are independent and

M (U An> =Y M(A,) in Lo(Q).
n=1 n=1

The study of random measures and the random integral of the form [ fdM,
where f is a real-valued function defined on 7', has been carried out by several
authors, see, e.g., [12, 7, 8, 3, 5]. Rosinski [6] considered the case in which the
integrand f takes values in a Banach space X.

Vector random measures arise naturally as a Banach space generalization of
random measures. In this setting, for each A € A, M(A) is no longer a real-
valued random variable but a random variable with values in a Banach space X.
Some aspects of vector random measures and the random integral of real-valued
functions with respect to vector random measures were discussed in [9, 10].

In this paper we are concerned with the study of the vector symmetric random
stable measures and random integral with respect to them. Definition and prop-
erties of vector symmetric random stable measures are introduced in Section 2,
where each X-valued p-stable random measure Z,, is associated with a determin-
istic vector measure @), taking values in a certain Banach space. In Section 3 we
deal with the random integral of the form [ fdZ,, where f is a real-valued func-
tion defined on 7. Conditions for the integrability of a function f with respect
to Z, is expressed in terms of the vector measure ), (Theorem 3.1 and Theorem
3.4). In particular, if X is of type p then f is Z,-integrable if and only if |f|? is
Qp-integrable.
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2. VECTOR SYMMETRIC RANDOM STABLE MEASURES

Let X be a separable Banach space and (7,.4) be a measurable space. A
mapping M : A — L8 (Q) is called an X-valued symmetric random measure
on (T, A) if for every sequence (A,) of disjoint sets from A the r.v.’s M(A,) are
independent, symmetric and

M <G An> = iM(An) in L% (Q)
n=1 n=1

An X-valued symmetric random measure F' is said to be p-stable (0 < p < 2) if
for each A € A, F(A) is a p-stable random variable. In this paper, we always
denote an X-valued symmetric p-stable random measure by Z,. For brevity we
write Z for Zs.

Definition 2.1 Let Z be an X-valued symmetric Gaussian random measure. A
function on A whose value on a set A € A is the covariance operator of the
Gaussian r.v. Z(A) is called the characteristic measure of Z and denoted by Q.

In order to study properties of the characteristic measure @ it is useful to
introduce on L% (£2) a concept of inner product whose values are no longer scalar
but operators. For £,n € L% () the inner product of ¢ and 7, denoted by [€, 7],
is an element of L(X’, X) defined by

€, la = / W) (n(w),a)dP, Vac X'

Here the Bochner integral exists since &, 1 belong to L% (€2).

Let us recall the notion of nuclear operators. An operator T € L(X', X)
is called nuclear if there exist two sequences (z,) C X”,(y,) C X such that
2 lznllllyn]l < oo and

(1) Ta= Z(a,xn)yn, Va € X'.

If T' is a nuclear operator then the nuclear norm of T is defined by

1T lhe = inf {3 Iaalllynll }

where the infimum is taken over all sequences (z,,) C X7, (y,) C X satisfying
(1)

The nuclear operators from X’ into X form a Banach space under the nuclear
norm and denoted by N(X’, X). The intersection of N(X’, X) and LT(X’, X) is
denoted by N (X', X).

Theorem 2.1.

1. [&, 1] is a nuclear operator and

(2) IS nllnue. < €llza lImllz,-
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2. [&m] = [, &)
(€, m +m2] = [§,m] + [£, 2]
[+ n2, €] = [m, €] + [m2, €]
(t&,n] =&, tn) =tl§,m]  VtER.
3. [&,€ € LT(X", X) and ||[€, Ellnue. < €N, -

4. If X s of type 2 then there exists a constant C > 0 such that
IENZ, < CIE Ellnue

for all X -valued symmetric Gaussian r.v.’s €.

5. If lim &, = & limn, = n in L3 (Q) then
lim[&,,n,) = [€,m] in N(X', X).

Proof. 1) Let &,m be simple r.v.’s

= inIAi’ n= Z?JJAZ-

where 14 denotes the characteristic function of the set A. We have

€la =3 wilys, @) P(Ay)
=1

Hence
I1Es Ml nue < Z il lly: || P(A /Héll [nlldP < [[]| 7]l 2y -

Now let &, be arbitrary elements in L3 (). There exist simple r.v.’s (&,), ()
such that &, — € and 7, — n in L% (). We have

(3) H[gnvnn]Hnuc < H£nHL2H77nHL2
and

||[£nu77n] - [gmunm]Hnuc < H&l”LzHUﬂ - anLg + H”?m”Lz”fn - §m||L2

which converges to 0 as m,n — oo. Since ([§,,mn]a,b) — ([€,n]a,b) for all
a,b € X' it follows that [, 7] is a nuclear operator. Letting n — oo in (3) we get

(2).
The assertions 2), 3) and 5) are easy to prove. The assertion 4) follows imme-
diately from a result of Chevet (see [1]). O

We call [¢, €] the covariance operator of the X-valued r.v. £ € L%(Q).

Let G(X) denote the set of covariance operators of X-valued Gaussian sym-
metric r.v.’s. In view of Theorem 2.1 we have the inclusion G(X) ¢ N*(X’, X).
Moreover, it was shown in [1] that the equality G(X) = N*(X’, X) holds if and
only if X is type 2.

Theorem 2.2. The characteristic measure @ is a function from A into G(X)

having the following properties

1. [Z(A),Z(B)] = Q(A, B) for all A,B € A.
2. @ is o-additive in the nuclear norm.



208 DANG HUNG THANG

3. @ is non-negative in the sense that for all sequences (Ag)} C A and all
sequences (a)} € X' we have

Z Z (Q(A;45)a;,a;) > 0.

Proof. 1) If A, B are disjoint then Z(A) and Z(B) are independent symmetric so
that [Z(A), Z(B)] = 0. For arbitrary sets A, B € A by Theorem 2.1 we have

[Z(A), Z(B)] = [Z(AB) + Z(A\ AB), Z(AB) + Z(B \ AB)]
= [Z(AB), Z(AB)] = Q(AB).

o0
2) Let A = |J A, where (A,) are disjoint sets. By Hoffmann-Jorgensen’s

n=1

theorem (see [3] Theorem 5.5) Z(A) = Y. Z(A,) in L% (). Hence by Theo-

rem 2.1
Q(A) = [Z(A), Z(A)] =lim | Y Z(Ax), ) Z(A)
k=1 k=1
=lim > [Z(Ay), Z(Ap)]
k=1
= Z Q(A;) in N(X', X).
k=1
3) We have

ZZ(Q(AiAj)ai,a] ZZ Aj)lai, aj)

n

2
> (Z(Ay), aj)] > 0.

i=1

ZZ/(Z(Ai)aai)(Z(Aj),aj)dP — E

O

A characterization of the class of characteristic measures of vector symmetric
Gaussian random measures is given by the following theorem.

Theorem 2.3. Let Q be a function from A into G(X). The following assertions
are equivalent:

1. Q is a characteristic measure of some X -valued symmetric Gaussian random
measure.

2. @ is non-negative definite and o-additive in the nuclear norm.

3. @ is non-negative definite and T-weakly o-additive in the following sense:
For each a € X' and each sequence (A,,) of disjoint sets from A we have

(Q <U An) a,a) = Z(Q(An)a>a)
n=1

=1
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Proof. By Theorem 2.2 only the implication 3) — 1) needs a proof. For g =
(A,a), h = (B,b), where A,B € A, a,b € X' we define the function K(g,h) by
K(g,h) = (Q(AB)a,b). From the assumption it follows that K is non-negative
definite and symmetric. Hence there exists a Gaussian process f(A4,a) indexed
by the set A x X’ such that

(4) Ef(A,a)f(B,b) = (Q(AB)a,b) .
For each fixed A € A, define the mapping T4 : X' — Ly(Q) by Taa = f(4,a).
We claim that T4 is linear. Indeed,
E[Ta(a+b) — Taa — Tpb)* = (Q(A)(a +b),a +b) + (Q(A)a, a) + (Q(A)b,b)
+2(Q(A)a,b) — 2(Q(A)(a +b),a)
—2(Q(A)(a+1b),b) =0,
which shows that T4(a + b) = Taa + Tgb. Similarly, Ts(ta) = tTsa for each
t € R. Since E|Txal?> = (Q(A)a,a) and Q(A) € G(X), T4 is decomposed by an
X-valued symmetric Gaussian r.v. denoted by Z(A) i.e.
Va € X' Tya = (Z(A),a) as.
Now we show that the mapping A — Z(A) yields an X-valued symmetric Gauss-
ian random measure with the characterization measure (). Indeed,we have
[Z(A), Z(A)] = Q(A).

Further, for disjoint sets (A,) C A and arbitrary elements (a,) C X’ by (4) the
Gaussian r.v.’s (Z(Ayg), aj) are uncorrelated so that they are independent. Hence
so are the r.v.’s Z(A,). For each a € X' we have

n 2 n

(Z(4),a) = Y (Z(Ar).a)| = (Q(A)a,a) = Y (Q(Ar)a,a)

k=1 k=1
which tends to 0 as n — oo. Consequently, (Z(A)a,a) = > (Z(Ax),a) in La().
k=1

According to the Ito-Nisio theorem we conclude that

Z(A) =) Z(Ap) in L%(Q).
k=1 O

Example 2.1. Let H : T — L*T(X’,X) be a function on T with values in
LT (X', X) such that H is T-weakly integrable w.r.t. a finite positive measure y on
(T, .A) in the sense that for each A € A there exists an operator H4 € LT (X', X)
such that

(Haa,a) = / (H(t)a,a) du, Va € X'.
A

We shall prove that if Hr € G(X) then there exists an X-valued symmetric
Gaussian random measure Z with the characteristic measure @ given by Q(A) =
H 4. Indeed, since (H aa,a) < (Hra,a), Ya € X', by the key property of Gaussian
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covariance operators (see [4]) it follows that H4 € G(X). Put Q(A) = Ha. For
(Ap)p_y C Aand (ax)p_, C X' we have

ij=1 ij=17p

_ / (H(t)a(?), a(t)) du(t) > 0,

t

n
where a(t) = > I4,(t)a;. Hence @ is non-negative definite. The T-weak o-

=1
additivity of @ follows from the T-weak integrability of H. Thus the assertion
follows from Theorem 2.3.

Example 2.2. (Vector Wiener random measures) Given an operator R € G(X),
consider a function H given by H(t) = R, Vt € T. Clearly, H is T-weakly
integrable and H4 = pu(A)R. By Example 2.1 there exists an X-valued symmetric
Gaussian random measure W such that for each A € A, the covariance operator
of W(A) is u(A)R. We call W the X-valued Wiener random measure with the
parameters (u, R).

Next, we consider the case 0 < p < 2. Let S be the unit sphere of X, endowed
with the metric generated by the norm of X. Let M(S) denote the set of all
real-valued measures of bounded variation on S and M™(S) denote the set of
finite non-negative symmetric measures on S. M(S) is a Banach space under
the usual operations of addition and multiplication by numbers. The norm of a
measure A € M(S) is given by ||A||m = |A|(S), where |A| stands for the variation
of \.

It is known (see [4], Th.6.4.4) that for each X-valued symmetric p-stable r.v.
¢ there exists a unique finite symmetric measure I'¢ € M™T(S) such that the
characteristic function of £ is given by

Besplite.o) = e {- [ (@aprc}.

From now on, I'¢ is called the spectral measure of &.

Denote by S,(X) the set of spectral measures of X-valued symmetric p-stable
r.v.’s. We have the inclusion S,(X) C M™(S). Moreover, it is known that (see
[4]) Sp(X) coincides with M™(S) if and only if X is of stable type p.

Some useful properties of the correspondence £ — I'¢ are listed in the following
theorem.

Theorem 2.4.

1. th = |t|pF§ vVt € R.
2. There exists a constant C' > 0 depending only on r, p, (0 <r < p) such that

ITell < C {E|€| /"
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Moreover, if X is of stable type p then there exists a constant K > 0 de-
pending only on r,p such that

{BEIY" < K|T|.
3. Let (&,)be a sequence of X -valued symmetric independent p-stable r.v.’s such
(e.]

that the series > &, converges to a X-valued r.v. & in L% (Q). Then we

n=1

have T¢ = 3" T, in M(S) and we have
n=1

o0
ITell = T, -
n=1

Proof. The assertion 1) is easy to prove. The assertion 2) is an immediate con-
sequence of Corollary 7.3.5 and Prop051tlon 7.5.4 in [4]. Now we prove 3). Put

Ty = Z &;. It is easy to see that 'y, Z I¢,. Since I'g; € MT(S) we have
i=1 i=1

n
(5) Tl = > 1T,
=1
n

(6) ITa, = Tanll= > IITg]-

i=m-+1

Since z,, converges to £ in probability by Proposition 6.6.5 in [4] I';, converges
weakly to I'¢ which implies that ||, || converges to|I'¢|| i.e.

[ee)
ITell = IITe, -
n=1

From this and (6) it follows that I';,, converges in M(S). The limit must be I'¢
since I';,, converges weakly to I'c. O

Definition 2.2. Let Z, be an X-valued symmetric p-stable random measure. A
function on A, whose value on a set A € A is the spectral measure of Z,(A) is
called a characteristic measure of Z, and it is denoted by (@),.

Theorem 2.5. The characteristic measure Q, of Z, is a mapping from A into
Sp(X) possessing the following properties:

1. Qp is o-additive in the norm of M(S). Thus Qp is a vector measure with
values in the Banach space M(S).
2. Qp is of bounded variation and the variation |Qp| is given by

1@Qpl(A) = [|[Qp(A)[lm-
3. If X is of stable type p then there exists a constant K > 0 such that
P{IZ,(A)| > 1} < KtP|Q,[(A), VAcA, VieR.
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Proof. The assertion 1) follows easily from Theorem 2.4. In order to prove 2) let
{Bi1, Ba,...,B,} be a finite partition of A. Then

STIQuB) =1 > Qu(B)]| = Qp(A)]-
=1 =1

Hence |Qp|(A) = ||Qp(A)] as claimed. Finally, by Propositions 7.5.4 and 7.3.1 in
[4] we get
P{l|Zy(A)] > t} < Kt7P[|Qp(A)| = Kt7P|@pl(A),

where K is a constant. O

3. RANDOM INTEGRAL FOR REAL-VALUED DETERMINISTIC FUNCTIONS

The stochastic integral of real-valued deterministic functions w.r.t. vector
random measures was investigated in [9]. Let us recall the definition. Let M be an
X-valued symmetric random measure with the control measure pu. If f : T — R

n
is a simple function, f = > ¢;I4, then the random integral of f w.r.t. M is
i=1

n
[ fdM = 3" t;M(A;). A function f is said to be M-integrable if there exists a
i=1

sequence of simple functions (f,,) such that lim f,,(¢) = f(f) p — a.s. and the
sequence { [ f,dM} converges in L% (). If f is M-integrable then we put

/fdM:p—limT/fndM.

T
The set of M-integrable functions is denoted by Lx (M).

Let Z be an X-valued symmetric Gaussian random measure with the charac-
teristic measure ). We notice that there exists a control measure for Z. Indeed,
by Bartle-Dunford-Schartz’s theorem (see [2], Corollary 6) there is a finite non-
negative measure g such that Q(A) = 0 whenever p(A) = 0. Clearly, p is a
control measure for Z.

Theorem 3.1.
1. If functions f and g are Z-integrable then fg is Q-integrable and for each

A e A we have
/ fdz, / gdz | = / 19dQ.
A A

A
2. A function f is Z-integrable if and only if the function |f|? is Q-integrable
and

/|f|2dcz € G(X).
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Proof. 1) By definition there exist simple functions (f,) and (g,) such that
lim f,, = f and lim g, = g for p-almost all ¢ and

p—lim/fndZ:/de, p—lim/gndZ:/gdZ.
A A A A

Since [, fndZ and [, gndZ are Gaussian symmetric r.v.’s, they also converge
in L% (Q) (see [3]). It is easy to check that

[/AfndZ,/AgndZ} :/AfngndQ.

By Theorem 2.1 it follows that [, frg,d@ converges to [[, fdZ, [,gdZ] in
N(X', X). Sin f,g, converges to fg p—a.e. we conclude that fg is Q-integrable
and for each A € A we have

[ /A faz, /A gdZ} — /A £9dQ.

2) The necessity follows from what has been proved. Conversely, suppose |f|? is
Q-integrable and inf |f|2dQ € G(X). Let

An = {t : |f(t)‘ < n}aBn = An \ An—lafn = IAnf-
Since f, is bounded it is Z-integrable (see [9] Theorem 2.4). Put z,, = [ f,dZ,
Sy = fgndZ = > x; where g, = I4, f. Since (B,) are disjoint the r.v.’s (z,)

i=1
are independent and symmetric. The characteristic function of S, is

xp {—Zl (1f \fk|2dcz]a,a)} e {-(1f n PdQlaa) §.

which converges to exp {— ([ [1f1?dQ)a, a)} when n — oo. Therefore, by the
Ito-Nisio theorem the sequence (S,,) converges in L% (€2). Since lim g,, = f p-a.e.
from Theorem 2.3 in [9] we conclude that f is Z-integrable. O

Corollary 3.1. Suppose that X is of type 2. Then

1. A function f is Z-integrable if and only if | f|*-is Q-integrable.
2. The inclusion Lo(T, A, |Q|) C Lx(Z) holds. Moreover, there exists a con-
stant K > 0 such that

B [ saziP <& [ 7@
for all f € Lo(T, A, |Q|), where |Q| stands for the variation of Q.

Proof. The assertion 1) is a direct consequence of Theorem 3.1 and the fact that
G(X) = NT(X’, X) provided X is of type 2. We prove the assertion 2). Let f
be a simple function, f =) ¢;14,. Since X is of type 2 we have

E|l /deH2 = E| Y tZ(A)|* < ) [EIPEIZ(A)]
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where C1 is a constant. By Theorem 2.1 it follows that
E[Z(A)[P < Co]| Q(A))[lnue < Co|Q|(As),

where (5 is a constant. From this we obtain
B [ fazP < xS uPiQlian = & [ 1Paql,

where K = C1C4y. Since the set of simple functions is dense in Ly(T), A, |Q|) the
assertion 2) follows. O

Theorem 3.2. Let W be a X-valued Wiener random measure with the para-
meters (u, R) (Example 2.2). A function f is W-integrable if and only if f €
Lo(T, A, n). Moreover, for any orthonormal basis (ey,) in Lo(T, A, p) we have

1. {[ e, dW} is a sequence of X -valued independent symmetric Gaussian r.v.’s
with the same covariance operator R.
2. For each f € Lo(T, A, 1) we have

(7) /de _ i(f, en)/en aw

where (.,.) stands for the scalar product in Lao(T, A, ). The series (7) con-
verges a.s. in the norm topology of X.

Proof. Only the assertions 1) and 2) need to be proved. We have by Theorem 3.1
[ [ endW, [ €ydW] = (em,en)R. Thus the assertion 1) is proved. Now, for each
ae X'

£ | ( [ aw.a) = Sore( [ ewaw a)r — (Raa) | [ 17Pdu— kz (Fren)l

which converges to 0 as n — oco. Hence by the Ito-Nisio theorem the expansion
(7) is proved. O

As an application of the above theorem, let us investigate the possibility of
representing an X-valued symmetric Gaussian process as a Gaussian random
series. Let &(u),u € I, be an X-valued symmetric Gaussian process indexed by
the parameter I. By Theorem 2.7 in [11] we get the following statement:

There exists a sequence () of real-valued Gaussian i.i.d. random variables
and a sequence (fn(u)) of X-valued deterministic functions defined on I such that
for each u € I we have

§(u) = Zanfn(u) a.s.
n=1

in the norm of X.

Now it is natural to ask if there exists a sequence (a,) of X-valued Gauss-
ian i.i.d. random variables and a sequence (fy,(u)) of real-valued deterministic
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functions defined on I such that for each u € I we have
o0

(®) Eu) = anfalu)  as.
n=1

in norm of X.

Let K (u,v) = [£(u),&(v)] be the covariance function of £. K (u,v) takes values
in N*(X’, X) and non-negative (Theorem 2.2). It is easy to check that if £ can
be represented in the form (8) then

(9) K(u,v) = k(u,v)R,

where k(u,v) is a real-valued non-negative function, and R is a covariance oper-
ator. Conversely we have

Theorem 3.3. If the covariance function K(u,v) of € is of the form (9) then
there exist a sequence (an,) of X -valued Gaussian i.i.d. random variables and a
sequence (fn(u)) of real-valued deterministic functions defined on I such that £
1s equivalent to the process n defined by

n(u) = Z o frn(u) a.s.
n=1

Proof. Since k(u,v) is non-negative there exist a measurable (7', A, ) and a fam-
ily (hy),u € I of functions in Lo(T, A, i) such that

k(u,v) = /T () (1) ().

Let W be an X-valued Wiener random measure with the parameter (11, R). Define
an X-valued Gaussian process 7 by

n(u) = /T hu(t) AW (1)
Then by Theorem 3.1
)10 = ([ Bl i) R = K 0)R = K, 0),

Two Gaussian processes n and £ the same covariance function so they have same
finite dimensional distributions. From (7) we get

oo

n(u) = /hudW: Z(hu,en)/endW a.s.
n=1
Put oy, = [ endW, fr(u) = (hy,e,) we obtain the desired claim. O

Now we consider the case 0 < p < 2. Clearly, the variation |@Qp| of the charac-
teristic measure @, of Z, is a control measure for Z,.
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Theorem 3.4. A function f is Z,-integrable if and only if the function |fP is
Qp-integrable and

/ 1P dQy € Sy(X).

In this case, [ |f|PdQ) is exactly the spectral measure of the X -valued symmetric
p-stable r.v. [ fdZ,.

To prove Theorem 3.4 we shall need the following lemmas.

Lemma 1. Let (&,) be a sequence of X-valued symmetric p-stable r.v.’s such
that &, converges to & in L% (X). Then for each r < p the sequence (&,) also
converges to & in L ().

Proof. 1t follows from Proposition 7.3.11 in [4]. O

Lemma 2. Let g be non-negative, |Qp|-integrable. Then g is Qp-integrable and

we have
| [oaq|,, = [sda.

Proof. 1t is easy to see that the lemma holds for simple functions g. Now let g be
non-negative, |Q,|-integrable. There exists an increasing sequence (gy,) of simple
functions converging to g everywhere and [(g — g,,)d|@,| — 0. Then

H/gnde_/gmdeHM :/A‘gn_gm|d|Qp‘ —0 as m,n—0.
A A

Hence by the definition of the integral w.r.t. vector measure we infer that g is
Qp-integrable and

| [oaq, |, =t [ ouiqy|, =tim [g.dQsi= [sd@l

Proof of Theorem 3.4. Suppose that f is a simple function f = > ¢;I4, . Put
& =Zp(Ai), €= [ fdZ, = > t;&. By Theorem 2.4 the spectral measure of £ is

(1) Te=3Tue =3 1tlTus = S 6P Qu(A) = / 1 £ PdQ,.
In view of Lemma 2 and Theorem 2.4 we get
(11) / FPIQ,) = [Tell < CLE|¢|T /" = C{E| / faz, |,

where C is a constant.

Let f be an arbitrary Z,-integrable function. There exist simple functions (f;,)
such that lim f, = f |Qpl-a.e and [ f,dZ, converges to [ fdZ, in L (). By
Lemma 1, the inequality (11) and Fatou’s Lemma we get

(12 [1rac < c{el [ sazir}"
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Thus |f|P is |Qp|-integrable so that it is @,-integrable by Lemma 2.

Finally, we shall show that [ |f|PdQ), is the spectral measure of [ fdZ,. Indeed,
there exist simple functions (f,) such that |f,(¢)| < |f(¢)| and lim f,(t) = f(¢)
for all t. By the dominated convergence theorem for vector measure we have

(13) lim / FulPdQ, = / FPdQ, i M(S).

On the other hand, by the dominated convergence theorem for vector random
measure (see [9] Cololllary 3.4) we get

lim / fudZ, = / fdz, in L%(Q).

Thus the spectral measure of [ f,dZ, converges weakly to that of [ fdZ,. From
this and together with (10) and (13) it follows that [ |f,[PdQ, is precisely the
spectral measure of [ fdZ,.

In order to prove the converse, let
An:{t: ‘f(t) STL}, Bn:An\Anfla fn:Ian
Since f, is bounded,it is Zy)-integrable (see [9]). Put

n
Tp = / fadZy,  Sp = / gndZy =)
=1

where g, = I4, f. Since (B,,) are disjoint the r.v.’s (x,) are independent and
symmetric. The characteristic function of S, is exp {— [4|(z,a)[Pdl',} where
T, = [, |f[PdQ, which converges to exp { — [¢ [(x,a)[Pdl } where T' = ['|f[PdQ,.
The rest of the proof is identical to the last part of the proof of Theorem 3.1.

U

Theorem 3.5. Suppose that X is of stable type p. Then

1. A function f is Z,-integrable if and only if |f|P is Qp-integrable.
2. A function f is Z,-integrable if and only if | f|P is |Qp|-integrable. Moreover,
there exist a constant K > 0 such that

P{u [ 14z, t} <k [ |1,

for all f e Ly(T, A, |Qp|) and all t € R.

Proof. The assertion 1) is a direct consequence of Theorem 3.4 and the fact that
Sp(X) = M™(S) provided that X is of stable type p. Now we prove 2). If
f € Ly(T, A, |Qp|) then |f|P is Qp-integrable so f is Z)-integrable. The con-
verse follows from (12). Finally, by using Lemma 2 of Theorem 3.4, together
Proposition 7.5.4 and 7.3.1 in [4] we get

P{n [ raz,1> t} <k || [ irrac, =K [ 11y,

where K is a constant. O
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