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ON A GENERALIZED COX-ROSS-RUBINSTEIN

OPTION MARKET MODEL

NGUYEN VAN HUU AND TRAN TRONG NGUYEN

Abstract. This paper considers a generalization of the Cox-Ross-Rubinstein
model for an option market. Some limit theorems for the stock price process
and their application to approximately determining the rational price and
hedging strategies of standard European option are established.

1. Introduction

As well known, the simplified option market model considered by J. C. Cox,
R. A. Ross, M. Rubinstein [2] and recently by A. N. Shirijaev, Yu. M. Kabanov,
D. O. Kramkov, A. V. Mel’nikov [6] and by S. T. Rachev, L. Ruschendorf [5],
consists of two processes:

(i) a risk free asset (for example a bank account) given by

Bn = B0(1 + r)n or Bn = Bn−1(1 + r),

where B0 is known, n = 1, 2, . . . , N .

(ii) a stock price process possessing the dynamics

Sn = Sn−1(1 + ρn), n = 1, 2, . . . , N,

or equivalently

Sn = S0

n
∏

k=1

(1 + ρk), n = 1, 2, . . . , N,

where S0 is given and {ρk, k = 1, 2, . . . , N} is a sequence of i.i.d. variables such
that

ρk =

{

u with probability p,

d with probability q = 1 − p, 0 < p < 1, −1 < d < u.

However, we observe that 1 + ρk =
Sk

Sk−1
does not always take two values

1+ u and 1 + d with constant probabilities p and q. For example, this is the case

when Sk is the value at moment t =
kT

N
of a diffusion price process defined by
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188 NGUYEN VAN HUU AND TRAN TRONG NGUYEN

dSt = St(µtdt + σtdWt), 0 ≤ t ≤ T , where Wt is a Wiener process. Therefore, a
natural generalization of the structure of the stock price sequence {Sn} can be
considered as follows.

The relative increments of the stock price ρk =
(Sk − Sk−1)

Sk−1
is assumed to take

values uk and dk with the respective probabilities

pk = P{ρk = uk} and qk = P{ρk = dk} = 1 − pk,(1.1)

− 1 < dk < uk, ρk = ρk(N), uk = uk(N), pk = pk(N) = 1 − qk(N).(1.2)

In this article we will study an option market defined by the two following
processes

(i) a risk free asset process given by

Bn = Bn−1(1 + rn),(1.3)

where B0 is known and rn = rn(N) > 0, n = 1, 2, . . . , N .

(ii) a stock price process

Sn = Sn−1(1 + ρn),(1.4)

where S0 is known and ρn satisfies (1.1), (1.2), n = 1, 2, . . . , N .

The Cox-Ross-Rubinstein option market model which is also called the bino-
mial model and its generalization defined by (1.1)-(1.4) are the rather rare cases
of a complete market model of discrete time, where one can well define the fair or
rational price and hedging strategy of any option contingent claim (see Section
4.1 below). However, as we can see in Sections 3 and 4, our generalized model, is
a good approximation for the option pricing model of continuous time, where the
stock price St is given by dSt = St(αtdt + σtdWt), Wt being a Brownian motion.

For the sake of simplicity, the index N in the expressions of rn, ρn, pn, qn will
be deleted in the sequel.

We shall prove that under some conditions on uk, dk, pk, ln
(SN

S0

)

will be

asymptotically normal as N → +∞. The asymptotic property of ln
(SN

S0

)

will

be used for pricing standard European option. The functional convergence in the
space D of cadlag functions with Skorokhod’s metric will be also shown. The
above convergence will also be useful for hedging some contingent claim.

2. Limit distribution of ln
(SN

S0

)

Suppose the price of some stock has the structure (1.1), (1.2), (1.4). Put

ZN = ln
(SN

S0

)

.
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Lemma 2.1. Let

αN = max
1≤k≤N

max(|uk|, |dk|) → 0,(2.1)

fn(t) = EeitZn ,(2.2)

then

ln fN (t) = it
{

N
∑

k=1

[

(pkuk + qkdk) −
1

2
(pku

2
k + qkd

2
k)

]

}

(2.3)

− 1

2
t2

{

N
∑

k=1

[

(pku
2
k + qkd

2
k) − (pkuk + qkdk)

2
]

}

+ θ max(|t|, |t3|)
N

∑

k=1

(pku
2
k + qkd

2
k)αN ,

where θ stands for a parameter bounded by some positive constant C.

Proof. Since ZN =

N
∑

n=1

ln(1 + ρn) is the sum of independent variables taking only

two values ln(1 + uk), ln(1 + dk) with respective probabilities pk and qk, we have

fN (t) =

N
∏

k=1

gk(t)(2.4)

with

gk(t) = E[exp(it ln(1 + ρk))](2.5)

= pk exp(it ln(1 + uk)) + qk exp(it ln(1 + dk)).

Representing exp(it ln(1 + uk)) as a series in ln(1 + uk) we obtain

exp(it ln(1 + uk)) = 1 + it ln(1 + uk) −
1

2
t2 ln2(1 + uk) + θ|t|3(| ln(1 + uk)|)3.

(2.6)

Noticing that

ln(1 + uk) = uk − u2
k

2
+ θ(|uk|)3 ≈ uk,

ln2(1 + uk) = u2
k + θ(|uk|)3 ≈ u2

k,

we have

eit ln(1+uk) = 1 + it
(

uk − u2
k

2

)

− t2
u2

k

2
+ θ max(|t|, |t|3)|uk|3.(2.7)

Similarly

eit ln(1+dk) = 1 + it
(

dk − d2
k

2

)

− t2
d2

k

2
+ θ max(|t|, |t|3)|dk|3.(2.8)
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It follows from (2.5), (2.7), (2.8) that

gk(t) = 1 + it
[

pkuk + qkdk − 1

2
(pku

2
k + qkd

2
k)

]

− 1

2
t2(pku

2
k + qkd

2
k)(2.9)

+ θ max(|t|, |t|3)(pk|uk|3 + qk|dk|3).
Therefore

ln gk(t) = it
[

pkuk + qkdk − 1

2
(pku

2
k + qkd

2
k)

]

(2.10)

− 1

2
t2(pku

2
k + qkd

2
k) −

1

2
t2(pkuk + qkdk)

2

+ θ max(|t|, |t|3)(pk|uk|2 + qk|dk|2)max(|uk|, |dk|).
Finally, (2.4) and (2.10) imply that

ln fN (t) =
N

∑

k=1

ln gk(t) is defined by (2.3).

The following theorems are direct consequences of the above lemma.

Theorem 2.1. Suppose that the following conditions are satisfied (as N → +∞):

(i) αN = max
1≤k≤N

max(|uk|, |dk|) → 0,

(ii)
N
∑

k=1

(pkuk + qkdk) → a,

(iii)
N
∑

k=1

(pkuk + qkdk)
2 → b2 ≥ 0,

(iv)
N
∑

k=1

(pku
2
k + qkd

2
k) → σ2 > 0.

Then

lim
N→+∞

ln fN(t) = it
(

a − 1

2
σ2

)

− t2
(σ2 − b2)

2
.(2.11)

Theorem 2.2. Put FN (x) = P
{

ln
(SN

S0

)

< x
}

. Under the conditions given in

Theorem 2.1 we have

lim
N→+∞

sup
∣

∣

∣
FN (x) − Φ

(x − a +
σ2

2

(σ2 − b2)
1

2

)
∣

∣

∣
= 0,(2.12)

where

Φ(x) =
1√
2π

x
∫

−∞

exp
(

− t2

2

)

dt.

Remark. If pkuk + qkdk ≥ 0 for all k = 1, 2, . . . , N , it follows from (i), (ii) that
b = 0.
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3. A functional convergence theorem

Let us consider a time interval [0, T ] and the sequence {Sn} defined by (1.1),
(1.2), (1.4). Then we can define a process {S+

t (N)} as follows:

S+
t (N) = S[ Nt

T
], t ∈ [0, T ],(3.1)

where [a] stands for the integer part of a. It is obvious that {S+
t (N), 0 ≤ t ≤ T}

belongs to the space of cadlag functions and that {S+
t (N), 0 ≤ t ≤ T} is an

independent increments process.

Let us consider the increments of the process ln(S+
t (N)):

ln(S+
t (N)) − ln(S+

s (N)) = ln(Sk(t)) − ln(Sk(s)),(3.2)

with k(t) = k(t,N) =
[Nt

T

]

, k(s) = k(s,N) =
[Ns

T

]

.

Suppose that the following conditions are satisfied as N → +∞, for all t ∈
[0, T ]:

(a) αN = max
1≤k≤N

max(|uk|, |dk|) → 0, max
1≤k≤N

(uk − dk)
2 ≤ θ

N
,

(b)
k(t,N)
∑

i=1
(piui + qidi) → a(t), (3.3)

(c)
k(t,N)
∑

i=1
(piui + qidi)

2 → b2(t) ≥ 0, (3.4)

(d)
k(t,N)
∑

i=1
(piu

2
i + qid

2
i ) → σ2(t) > 0. (3.5)

Notice that
( Si

Si−1

)

takes only two values

1 + ui = 1 + ui(N),

1 + di = 1 + di(N)

with probabilities pi(N) and qi(N) respectively. Then by Theorem 2.2, the dis-
tribution of

ln
(S+

t (N)

S0

)

− ln
(S+

s (N)

S0

)

= ln
(Sk(t)

S0

)

− ln
(Sk(s)

S0

)

converges to N(µt − µs; σ̃
2
t − σ̃2

s), where

µt = a(t) − σ2(t)

2
, σ̃2

t = σ2(t) − b2(t).(3.6)

It follows from the conditions (c) and (d), that the functions b2(t), σ2(t) and
σ̃2

t = σ2(t) − b2(t) are non-decreasing.

Further suppose that a(t), b(t), σ2(t) possess continuous derivatives and put

dµ(t)

dt
= α(t);

dσ̃2
t (t)

dt
= σ̄2

t (t) > 0.(3.7)
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Theorem 3.1. Assume that the conditions (a), (b), (c), (d) and (3.7) are satis-

fied. Then the process ln
(S+

t (N)

S0

)

converges in distribution on the space D of

cadlag functions to the process Z(t) given by:

dZ(t) = α(t)dt + σ̄(t)dWt, Z(0) = 0, 0 ≤ t ≤ T,(3.8)

where Wt is a standard Wiener process on [0, T ].

Proof. Taking in account Theorem 2.2 we see that the distribution of

ln
(S+

t (N)

S0

)

− ln
(S+

s (N)

S0

)

converges to the normal distribution N(µt − µs; σ̃
2
t − σ̃2

s) which is the distrib-

ution of Z(t) − Z(s). Hence, both processes ln
(S+

t (N)

S0

)

and Z(t) are indepen-

dent increments processes and all finite dimensional distributions of ln
(S+

t (N)

S0

)

converge to the ones of Z(t). Furthermore, we can prove that the sequence
{ln(S+

t (N))} is tight (see Appendix), and by Prohorov’s Theorem (see [1]) we
obtain the conclusion of Theorem 3.1.

Remark. If piui + qidi ≥ 0 for all i = 1, 2, . . . , N then b(t) = 0. Infact, it follows
from (a) and (c) that

k(t,N)
∑

i=1

(piui + qidi)
2 ≤ αN

k(t,N)
∑

i=1

(piui + qidi) → 0.

Remark. Putting S(t) = S0 exp(Z(t)), by Itô’s formula we have

dS(t) = S(t)(ᾱ(t)dt + σ̄(t)dWt), S0(0) = S0,(3.9)

where ᾱ(t) = α(t) +
(σ̃(t))2

2
=

d(a(t) − b2(t))

dt
, and it is easy to see that the

process {S+
t (N)} converges in distribution to S(t).

4. Approximately pricing for the standard European option

Let us recall some basic concepts. Consider a generalized Cox-Ross-Rubinstein
market defined by two processes {Bn} and {Sn} given by (1.3), (1.4) where {ρn}
is the sequence of independent random variables defined on the same probability
space (Ω,F , P ) and the objective probability measure P is defined such that

P{ρk = uk} = pk; P{ρk = dk} = qk = 1 − pk, (0 < pk < 1), k = 1, 2, . . . , N.

Put Fn = σ(Sk, 1 ≤ k ≤ n) = σ(ρk, 1 ≤ k ≤ n), n = 1, 2, . . . , N . We can take
Ω = {d1, u1}⊗...⊗ {dN , uN} and F = {A : A ⊂ Ω}.
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Suppose that at each moment n (n = 0, 1, 2, . . . , N − 1) an agent keeps π0
n

bank accounts of price Bn and π1
n shares of price Sn. Then at the moment n his

asset is equal to

V π
n = π0

nBn + π1
nSn,(4.1)

where π0
n and π1

n is assumed to be Fn−1-measureable.

Definition 4.1. A strategy π = {(π0
n, π1

n), 0 ≤ n ≤ N −1} is called self-financing
strategy if

Bn−1∆π0
n + Sn−1∆π1

n = 0,(4.2)

where ∆an = an − an−1.

It is easy to see that a strategy is self-financing if and only if

∆V π
n = π0

n∆Bn + π1
n∆Sn.(4.3)

Let us denote by SF the class of all self-financing strategies.

Definition 4.2. The quantities

∆V̄ π
n :=

V π
n

Bn

= π0
n + π1

nS̄n(4.4)

with S̄n =
Sn

Bn

are called discounted values corresponding to π.

It is easy to see that π ∈ SF if and only if

∆V̄ π
n = π1

n∆S̄n =
(π1

nSn−1

Bn

)

(ρn − rn).(4.5)

In fact, by (4.2)

∆V̄ π
n = ∆π0

n + S̄n−1∆π1
n + π1

n∆S̄n = π1
n∆S̄n.

Definition 4.3. A probability measure Q is called a neutral martingale measure
if Q ∼ P and V̄ π

n is an (Fn, Q)-martingale for all π ∈ SF .

Proposition 4.1. Q is a neutral martingale measure if and only if S̄n =
Sn

Bn

is

an (Fn, Q)-martingale.

Proof. According to (4.5) and under the assumption that π1
n is Fn−1-measureable,

EQ(∆V̄ π
n /Fn) = 0 if and only if EQ(∆S̄n/Fn) = 0. In other words, V̄ π

N -is an
(Fn, Q)-martingale if and only if S̄n is an (Fn, Q)-martingale.

Proposition 4.2. In the market (B,S) = {(Bn, Sn), n = 1, 2, . . . , N} with −1 <
dn < rn < un, there exists a unique neutral martingale measure Q such that

Q{ρn = un} = p∗n; Q{ρn = dn} = q∗n = 1 − p∗n,

where p∗n, q∗n are defined by

EQ(ρn) = p∗nun + q∗ndn = rn(4.6)
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or equivalently

p∗n =
rn − dn

un − dn

; q∗n =
un − rn

un − dn

(4.7)

Proof. By (4.5) we have

EQ(∆V̄ π
n /Fn) =

π1
nSn−1

Bn

EQ(ρn − rn) = 0

if and only if EQ(ρn) = rn for all n = 1, 2, . . . , N .

Definition 4.4. The value

C(HN ) = inf{V0 : ∃π ∈ SF, V π
0 = V0, V

π
n ≥ HN}(4.8)

is called the rational cost or price corresponding to the claim HN .

The problem is to define C(HN ) and to find a strategy π such that V π
0 = V0

and V π
n ≥ HN . The following theorem gives an answer:

Theorem 4.1. In the generalized Cox-Ross-Rubinstein market (B,S) we have:

(i) For any Fn-measureable claim HN

C(HN ) = EQ(H̄N ) with H̄N =
HN

BN

;(4.9)

(ii) With the initial capital V0 = C(HN ) there exitsts the so called minimum
hedging strategy π∗ such that

V π∗

0 = C(HN ); V̄ π∗

n = EQ(H̄N/Fn); V π∗

N = HN .(4.10)

This theorem is an analogy of Theorem 1 in [6] for a binomial option market
model.

Remark. The claim HN = max(SN − K, 0) := (SN − K)+ or HN = (SN − K)+
concerns the problem of pricing a standard European call option (S.E.C.O) or
standard European put option (S.E.P.O), respectively.

Definition 4.5.

(1) A strategy π ∈ SF is said to be arbitrage if V π
0 = 0, V π

N ≥ 0 and P{V π
N >

0} > 0.

(2) The market (B,S) is said to be arbitrage free if there is no arbitrage self-
financing strategy.

Remark. A market of arbitrage is essentially a mechanism for making money.

Definition 4.6. A market (B,S) is said to be complete if any contingent claim
HN is attainable, i.e., there exists an initial capital V0 and π ∈ SF such that
V π

0 = V0, V π
N = HN .
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Remark. The market (B,S) with −1 < dk < rk < uk is arbitrage free and
complete. This assertion follows from Proposition 4.2 and from [4], where it is
stated that a market (B,S) is arbitrage free and complete if and only if there
exists a unique martingale measure.

Let (B,S) be the option market defined above. Let Q be the neutral martingale
measure (whose existence is assured by Proposition 4.2). Suppose that

uk = rk + σk, dk = rk − τk; τk > 0, σk > 0 for all k = 1, 2, . . . , N.(4.11)

Put

F ∗
N (x) = Q

{

ln
(SN

S0

)

< x
}

.(4.12)

Theorem 4.2. Assume that the following conditions are fulfilled:

(a) max
1≤k≤N

max(rk, σk, τk) → 0,

(b)
N
∑

k=1

rk → a ≥ 0;
N
∑

k=1

σkτk → σ2 > 0 as N → +∞.

Then

lim
N→+∞

sup
x

∣

∣

∣
F ∗

N (x) − Φ
(x − a +

σ2

2
σ

)
∣

∣

∣
= 0.(4.13)

Proof. Let us verify the conditions of Theorem 2.1 with pk replaced by p∗k. At
first, the condition αN → 0 follows from (a) and the condition (ii) is equivalent
to

N
∑

k=1

EQ(ρk) =
N

∑

k=1

rk → a.

Since p∗kuk + q∗kdk = rk > 0, the conditions (iii) and (iv) follow from the first
remark of Section 3 and the fact that

N
∑

k=1

(p∗ku
2
k + q∗kd

2
k) =

N
∑

k=1

EQ(ρ2
k) =

N
∑

k=1

[

EQ(ρk − rk)
2 + r2

k

]

=

N
∑

k=1

[

p∗k(uk − rk)
2 + q∗k(dk − rk)

2
]

+

N
∑

k=1

r2
k

=

N
∑

k=1

σkτk +

N
∑

k=1

r2
k → σ2 (by (b)).

By virtue of Theorem 2.2 we obtain (4.13).

Theorem 4.3. Under the conditions of Theorem 4.2 the rational price of S.E.C.O
is approximately given by

CC = EQ

[(SN − K)+
BN

]

≈ S0Φ(d+) − Ke−aΦ(d−),(4.14)
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where

d± =
ln

(S0

K

)

+ a ± σ2

2
σ

,

and the rational price of S.E.P.O is approximately given by

CP = EQ

[(K − SN )+
BN

]

≈ S0 − Ke−a − CC .(4.15)

Proof. According to (4.9), with HN = (SN − K)+ we have

CC = EQ

[(SN − K)+
BN

]

=
S0

BN

EQ

[(SN

S0
− K

S0

)

+

]

,(4.16)

BN =

N
∏

k=1

(1 + rk) = exp
(

N
∑

k=1

ln(1 + rk)
)

= exp
(

N
∑

k=1

rk + θ

N
∑

k=1

r2
k

)

→ ea.

(4.17)

Further, since F ∗
N converges weakly to Φ

(x − a +
σ2

2
σ

)

we have

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dF ∗
N (x) →

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

by taking into account of the continuity and the boundedness of the function

min
{

exp(x) − K

S0
, 0

}

on (−∞,+∞)). On the other hand,

+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dF ∗
N (x) =

+∞
∫

−∞

[

ex − K

S0

]

dF ∗
N (x) −

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dF ∗
N (x)

= EQe
ln(

SN

S0
) − K

S0
−

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dF ∗
N (x)

= EQ

N
∏

i=1

(1 + ρi) −
K

S0
−

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dF ∗
N (x) =
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=

N
∏

i=1

(1 + ri) −
K

S0
−

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dF ∗
N (x)

→ ea − K

S0
−

ln( K

S0
)

∫

−∞

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

= ea − K

S0
−

{

+∞
∫

−∞

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

−
+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)}

= ea −
+∞
∫

−∞

exdΦ
(x − a +

σ2

2
σ

)

+

+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

=

+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

.

Therefore

EQ

(SN

S0
− K

S0

)

+
= EQ

[

exp
(

ln
(SN

S0

)

)

− K

S0

]

+

(4.18)

=

+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dF ∗
N (x)

≈
+∞
∫

ln( K

S0
)

[

ex − K

S0

]

dΦ
(x − a +

σ2

2
σ

)

=

+∞
∫

ln( K

S0
)

exdΦ
(x − a +

σ2

2
σ

)

− K

S0

[

1 − Φ
(

ln
( K

S0

)

− a +
σ2

2
σ

)]

= eaΦ(d+) − K

S0
Φ(d−).

It follows from (4.16)-(4.18) that

CC ≈ S0e
−a

{

eaΦ(d+) − K

S0
Φ(d−)

}
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which is equivalent to (4.14). To prove (4.15) we notice that

(SN − K)+ − (K − SN )+ = SN − K

and
Sn

Bn

is an (Fn, Q)-martingale. Hence,

EQ(SN − K)+ − EQ(K − SN )+
BN

= EQ

( SN

BN

)

− K

BN

= S0 −
K

BN

≈ S0 − Ke−a,

or CP ≈ S0 − Ke−a − CC .

Remark. If dk = rk − σk, uk = rk + σk then the condition (b) of Theorem 4.2 is
replaced by (b’)

N
∑

k=1

rk → a ≥ 0,

N
∑

k=1

σ2
k → σ2 > 0.

Remark. In the option market model considered above there are too many un-
known parameters: rk, uk, dk, k = 1, 2, . . . , N . However even if these quantities

change while

N
∑

k=1

rk,

N
∑

k=1

σkτk remain constant we can still apply Theorem 4.3 to

calculate the rational prices of S.E.P.O and S.E.C.O.

In this part we shall prove an assertion similar to Theorem 3.1, where P is
replaced by Q.

Let us return to the sequence of the prices
{

Sk, k = 1, 2, . . . , N} given by (3.1)

and to the price process {S+
t (N), t ∈ [0, T ]} defined by (3.1) of Section 3. We

consider the following conditions:

(a1) −1 < dk < rk < uk, k = 1, 2, . . . , N ,

(b1) max
1≤k≤N

max(rk, σk, τk) → 0, max
1≤k≤N

σkτk ≤ θ

N
,

(c1)
k(t,N)
∑

i=1
ri → a(t) ≥ 0, for all t ∈ [0, T ],

(d1)
k(t,N)
∑

i=1
σiτi → σ2(t), for all t ∈ [0, T ],

where σk = uk − rk, τk = rk − dk, k(t,N) =
[Nt

T

]

,

(e1) the functions a(t), σ2(t) possess the continuous derivatives

da(t)

dt
:= α1(t),

dσ2(t)

dt
:= σ2

1(t) > 0.

Let Q be the neutral martingale measure defined by

Q{ρk = uk} = p∗k, Q{ρk = dk} = q∗k = 1 − p∗k,
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where p∗k, q∗k are defined by

EQ(ρk) = p∗kuk + q∗kdk = rk (see 4.6).(4.19)

Theorem 4.4. Suppose that the conditions (a1) - (e1) are fulfilled. Putting

Vk = EQ{(SN − K)+/Fk}

for k =
[Nt

T

]

we have

Vk ≈ SkΦ(d+(Sk)) − K exp[−(a(T ) − a(t))]Φ(d−(Sk))(4.20)

where

d±(Sk) =
ln

( K

Sk

)

+ a(T ) − a(t) ± σ2(T ) − σ2(t)

2

(σ2(T ) − σ2(t))
1

2

·(4.21)

Proof. We have

(SN − K)+ = Sk

(SN

Sk

− K

Sk

)

+
.

Further, it follows from (c1) and (d1) that for k = k(t,N) =
[ tN

T

]

N
∑

i=1

ri → a(T ) − a(t) ≥ 0, for all t ∈ [0, T ],

N
∑

i=1

σiτi → σ2(T ) − σ2(t), for all t ∈ [0, T ].

Therefore, by Theorem 4.2 ln
(SN

Sk

)

is asymptotically normal N(β(t); δ2(t)) where

β(t) = a(T ) − a(t) − σ2(T ) − σ2(t)

2
,

δ2(t) = σ2(T ) − σ2(t) > 0.

Finally, the expression (4.20) is established in a similar way as in the proof of
Theorem 4.3.

Theorem 4.5. Suppose that the condition (a1) - (e1) are fulfilled. Then under

Q, the process ln
(S+

t (N)

S0

)

with {S+
t (N), t ∈ [0, T ]}, defined by (3.1) converges in

distribution on the space D to the process Z1(t) given by the following stochastic
differential equation:

dZ1
t = (α1(t) −

1

2
σ2

1(t))dt + σ1(t)dWt, Z1
0 = 0.(4.22)
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The proof of Theorem 4.5 is similar to that of Theorem 3.1.

Remark. Put S1
t = S0 exp(Z1

t ). Then S1
t satisfies the following SDE:

dS1
t = S1

t (α1(t)dt + σ1(t)dWt), S1
0 = S0,(4.23)

and by Theorem 4.5, {S+
t (N), 0 ≤ t ≤ T} converges in distribution on D to

{S1
t , 0 ≤ t ≤ T}.
Finally, let us consider the market {(Bk, Sk), k = 1, 2, . . . , N} where Bk =

k
∏

i=1

(1 + ri) with rk is the value of a short interest rate process at time points
kT

N

of the interval [0, T ] and Sk is the value of some stock price process at time point
kT

N
of [0, T ].

According to Theorem 4.1, for an initial capital V0 = CC defined by (4.14),
there always exists a SF strategy π such that V π

0 = CC and V π
N = (SN −K)+. A

similar assertion is also valid for V0 = CP and the claim (K − SN )+ of S.E.P.O.
CC , CP and the corresponding hedging strategies can be approximately calculated

by applying Theorem 4.3 and Theorem 4.4. In fact, by (4.20), for k =
[ tN

T

]

we

have

Vk ≈ Fk(Sk) = Fk(Sk−1(1 + ρk))

where Fk(Sk) stands for the right side of (4.20). Further

Vk = π0
kBk + π1

kSk−1(1 + ρk) ≈ Fk(Sk−1(1 + ρk))(4.24)

and for ρk = dk, ρk = uk we have

π0
kBk + π1

kSk−1(1 + uk) ≈ Fk(Sk−1(1 + uk))

π0
kBk + π1

kSk−1(1 + dk) ≈ Fk(Sk−1(1 + dk)).

Subtracting the above two equalities we obtain

π1
kSk−1(uk − dk) ≈ Fk(Sk−1(1 + uk)) − Fk(Sk−1(1 + dk))

or

π1
k ≈ Fk(Sk−1(1 + uk)) − Fk(Sk−1(1 + dk))

Sk−1(uk − dk)
·(4.25)

For the case where uk = rk +σk, dk = rk−σk, π1
k can be approximately calculated

by

π1
k ≈ Fk(Sk−1(1 + rk + σk)) − Fk(Sk−1(1 + rk − σk))

2σkSk−1

since

π1
k ≈ F ′

k(Sk−1(1 + rk)), as σk → 0.(4.26)
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After defining π1
k from (4.26) we can define π0

k from (4.4) i.e.

π0
k = V̄ π

n − π1
nS̄n.

The remaining part of Proposition 4.3, the claim HN = (K−SN )+, can be proved
similarly.

Appendix

On the tightness of the sequence
{

ln
(S+

t (N)

S0

)

, 0 ≤ t ≤ T, N = N0, N0 + 1, . . . ,
}

Let us consider the sequence of the processes

ln
(S+

t (N)

S0

)

=

k(t,N)
∑

i=1

ln(1 + ρi)(1)

with k(t,N) =
[tN

T

]

, 0 ≤ t ≤ T , N = N0, N0 + 1, . . . , where N0 is some possible

integer (see (3.1) - (3.6) of Section 3).

Lemma. Under the conditions (a) - (d) and (3.7) of Theorem 3.1, the sequence
{

ln
S+

t (N)

S0
, 0 ≤ t ≤ T,N = N0, N0 + 1, . . .

}

is tight.

Proof. Put

Mt(N) = E ln
(S+

t (N)

S0

)

=

k(t,N)
∑

i=1

E(ln(1 + ρi)).(2)

Then

Mt(N) =

k(t,N)
∑

i=1

[

pi ln(1 + ui) + qi ln(1 + di)
]

=

k(t,N)
∑

i=1

[

pi

(

ui −
u2

i

2

)

+ qi

(

di −
d2

i

2

)]

+ θ
(

pi|ui|3 + qi|di|3
)

=

k(t,N)
∑

i=1

[

(piui + qidi) −
(piu

2
i

2
+

qid
2
i

2

)]

+ θ max(|ui| + |di|)
k(t,N)
∑

i=1

(piu
2
i + qid

2
i ).

By (3.3) and (3.5) we see that

Mt(N) → a(t) − σ2(t)

2
as N → +∞.(3)

Putting
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Xt(N) = ln
(S+

t (N)

S0

)

− Mt(N),(4)

it is easy to see that all finite dimensional distributions of {Xt(N); 0 ≤ t ≤ N}
converge weakly to the distribution of

Xt =

t
∫

0

σ̄(s)dWs(5)

where σ̄2(s) =
d(σ2(s) − b2(s))

ds
. It follows from (3), (4), (5) that ln

(S+
t (N)

S0

)

converges in distribution to a(t) − σ2(t) + Xt if and only if Xt(N) → Xt in

distribution and hence
{

ln
(S+

t (N)

S0

)

; 0 ≤ t ≤ T ;N = N0, N0 + 1, . . .
}

is tight if

and only if {Xt(N); 0 ≤ t ≤ T ;N = N0, N0 + 1, . . . } is tight.

In order to prove that {Xt(N)} is tight, according to Theorem 15.6 in [1], it
suffices to show that there exists a positive constant C such that

E{[Xt1(N) − Xt(N)]2[Xt2(N) − Xt(N)]2} ≤ C(t2 − t1)
2(6)

for all 0 ≤ t1 ≤ t ≤ t2 ≤ T and N ≥ N0.

Let us prove (6). Since {Xt(N); 0 ≤ t ≤ T} is an independent increments
process we have

E{[Xt1(N) − Xt(N)]2[Xt2(N) − Xt(N)]2}(7)

= E{[Xt1(N) − Xt(N)]2}E{[Xt2(N) − Xt(N)]2}.
On the other hand, we have

E{[Xt1(N) − Xt(N)]2}(8)

= E
{[

ln
(S+

t1
(N)

S0

)

− Mt1(N) − ln
(S+

t (N)

S0

)

+ Mt(N)
]2}

= E
{

k(t,N)
∑

k(t1,N)

[

ln(1 + ρi) − E(ln(1 + ρi))
]

}2

=

k(t,N)
∑

k(t1,N)

E
[

ln(1 + ρi) − E(ln(1 + ρi))
]2

.

Noticing that

ln(1 + ρi) − E(ln(1 + ρi)) = ln(1 + ρi) − pi ln(1 + ui) − qi ln(1 + ui)(9)

= pi

[

ln(1 + ρi) − ln(1 + ui)
]

+ qi

[

ln(1 + ρi) − ln(1 + di)
]

.

and putting
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αi =
ln(1 + ui) − ln(1 + di)

ui − di

,(10)

we can easily verify the following equalities

ln(1 + ρi) − ln(1 + ui) = αi(ρi − ui),
(11)

(1 + ρi) − ln(1 + di) = αi(ρi − di).

It follows from (9) - (11) that

ln(1 + ρi) − E ln(1 + ρi) = αi[pi(ρi − ui) + qi(ρi − di)]

and hence

E{ln(1 + ρi) − E ln(1 + ρi)}2 = α2
i E{pi(ρi − ui) + qi(ρi − di)}2(12)

= α2
i [piq

2
i (ui − di)

2 + qip
2
i (di − ui)

2]

= α2
i piqi(ui − di)

2.

Futhermore, from (8), (12) we obtain

E[XN (t) − XN (t1)]
2 =

k(t,N)
∑

i=k(t1,N)

α2
i piqi(ui − di)

2.(13)

We notice also that

piqi ≤
1

4
and α2

i ≤ 4 if max(|ui|, |di|) ≤
1

2
·(14)

Hence (10) yields

αi =
1

ui − di

[ui − di

1 + di

− 1

2

(ui − di

1 + di

)2
+ δ

∣

∣

∣

ui − di

1 + di

∣

∣

∣

3]

≤ 1

1 + di

≤ 2, (0 < δ < 1).

From (13), (14) we obtain

E[Xt1(N) − Xt(N)]2 ≤
k(t,N)
∑

i=k(t1,N)

(ui − di)
2.(15)

Similarly

E[Xt(N) − Xt2(N)]2 ≤
k(t2,N)
∑

i=k(t,N)

(ui − di)
2.(16)

According to condition (a) of Theorem 3.1 the relations (7), (15), (16) imply that

E{[Xt1(N) − Xt(N)]2[Xt2(N) − Xt(N)]2} ≤
{

k(t2,N)
∑

k(t1,N)

(ui − di)
2
}2

(17)

≤ θ2

N2

[

k(t2, N) − k(t1, N)
]2

.
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If t2−t1 <
T

N
then either t, t1 ∈

[ iT

N
,
(i + 1)T

N

]

or t, t2 ∈
[ iT

N
,
(i + 1)T

N

]

for some

integer i and in this case either Xt(N) − Xt1(N) = 0 or Xt(N) − Xt2(N) = 0,

whereas if t2 − t1 ≥ T

N
then

k(t2, N) − k(t1, N)

N
=

[ t2N

T

]

−
[ t1N

T

]

N
≤ 2

t2 − t1
T

·

Finally, by (17), we always have

E{[Xt1(N) − Xt(N)]2[Xt2(N) − Xt(N)]2} ≤ 4θ2

T 2
(t2 − t1)

2 ≤ C(t2 − t1)
2(18)

with C = 4
( θ

T

)2
.

Thus (6) holds and this proves the tightness of {Xt(N)}.

Remark. Under Q we have to replace pi by p∗i , where p∗i =
ri − di

ui − di

, in this case

p∗i q
∗
i (ui − di)

2 = (ri − di)(ui − ri) = τiσi.

Hence, if max
1≤t≤N

τiσi ≤
θ

N
we obtain immediately (17), and the above lemma

remains valid when P is replaced by Q.
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