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ON MARTINGALES IN THE LIMIT AND

CONVERGENCE OF THEIR SUBSEQUENCES

DINH QUANG LUU AND NGUYEN THANH BINH

Abstract. Martingales in the limit and mils were first introduced by Mucci
(1976) and Talagrand (1985), respectively. They proved that every L

1-bounded
mil converges a.s. Recently, Luu (1999) has extended this result to sequen-
tial mils. In this note we consider sequences of random variables which are
not necessarily integrable. By using a stopping time method we shall give a
convergence result for their subsequences.

1. Notations and definitions

Throughout this note, let (Ω,A, P ) be a complete probability space, N the
set of all positive integers and (An, n ∈ N) an increasing sequence of complete
sub-σ-fields of A with An ↑ A. Let T denote the set of all bounded stopping
times w.r.t. (An, n ∈ N). Then, endowed with the usual order “≤” given by
σ ≤ τ iff σ(ω) ≤ τ(ω) a.s., T becomes a directed set. Further, given k ∈ N we
denote by T k the set of all bounded stopping times which take essentially at most
k values. Then one can regard T 1 as N and each T k as a cofinal subset of T .

For simplicity, given a cofinal subset Γ of T, p ∈ N and τ ∈ T with p ≤ τ , we
use the following notations:

Γ(p) = {γ ∈ Γ, p ≤ γ};

Γ(p, τ) = {γ ∈ Γ, p ≤ γ ≤ τ};

τ− = inf{k ∈ N, P ({τ = k}) > 0},

τ+ = max{k ∈ N, P ({τ = k}) > 0}.

We shall consider in this note only sequences (τn, n ∈ N) of T with n ≤ τn ≤
τ−
n+1. Further for a sub-σ-field B of A, we denote by L0(B) the set of all B-

measurable random variables and by L1(B) the Banach space of all (equivalence
classes of) elements X ∈ L0(B) with

E(|X|) =

∫

Ω

|X(ω)|dP (ω) < ∞.
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Unless otherwise stated we shall deal with only sequences (Xn, n ∈ N) in
L0(A) which are adapted to (An, n ∈ N).

Now, given a sequence (Xn, n ∈ N) in L0(A) and τ ∈ T , we define:

Xτ (ω) = Xτ(ω)(ω), ω ∈ Ω,

Aτ = {A ∈ A, A ∩ {τ = n} ∈ An, n ∈ N}.

Then it is known (see [4]) that (Aτ , τ ∈ T ) form an increasing family of complete
sub-σ-fields of A and each Xτ is Aτ -measurable. Moreover, if (Xn, n ∈ N) is
integrable then so is (Xτ , τ ∈ T ).

For other related notions the reader is referred to [1]. In this note we start
with the following definition.

Definition 1.1. A sequence (Xn, n ∈ N) in L1(A) is said to be:

a) a martingale in the limit if

lim
n

sup
m≥n

|En(Xm) − Xn| = 0 a.s.,

where given τ ∈ T and X ∈ L1(A), we mean by Eτ (X) the conditional expecta-
tion of X;

b) a mil if for every ε > 0 there exists p ∈ N such that for each n ∈ N(p) we
have

P
(

sup
q∈N(p,n)

|Eq(Xn) − Xq| > ε
)

< ε.(1.1)

Martingales in the limit were first introduced by Mucci [3] as the first important
generalization of martingales. Later the notion is essentially extended to mils by
Talagrand (1985), who proved that every L1-bounded mil converges, a.s.

Recently, the first author of this note has proved that the above convergence
result still holds for the following much larger class of martingale-like sequences
[2].

Definition 1.2. A sequence (Xn, n ∈ N) in L1(A) is said to be a sequential mil

if there exists a sequence (τn, n ∈ N) of T such that (Xn, n ∈ N) is a {τn}-mil,
i.e., for every ε > 0, there exists p ∈ N such that for each n ∈ N(p) we have

P
(

sup
q∈N(p,τn)

|Eq(Xτn) − Xq| > ε
)

< ε,(1.2)

where n ≤ τn ≤ τ−
n+1 and {τn} is the set of all elements of τn, n ∈ N .

It is clear that if (1.1) holds then so does (1.2) for τn = n, n ∈ N . However
in many applications, (Xn, n ∈ N) is not always integrable and sometimes the
convergence of a subsequence of (Xn, n ∈ N) gives us enough information. This
leads us to consider such sequences (Xn, n ∈ N) in L0(A) for which there exists a
sequence (τn, n ∈ N) of T such that the optional sampling sequence (Xτn , n ∈ N)
is integrable. The main aim of this note is to investigate the following class of
martingale-like-sequences, where U is always a cofinal subset of N .
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Definition 1.3. Given a sequence (τn, n ∈ N) of T and a cofinal subset U of N ,
we say that a sequence (Xn, n ∈ N) in L0(A) is a {τn}-mil relative to U if each
Xτn ∈ L1(A) and for every ε > 0 there exists p ∈ U such that for every n ∈ N(p)
we have

P
(

sup
q∈U(p,τn)

|Eq(Xτn) − Xq| > ε
)

< ε.(1.3)

Clearly, if a sequence (Xn, n ∈ N) in L1(A) is a {τn}-mil (in the sense of
Definition 1.2) then by (1.2) it is a {τn}-mil relative to N . More generally, if
V ⊂ U and (σn, n ∈ N) is a subsequence of (τn, n ∈ N) then every {τn}-mil
relatively to U is a {σn}-mil relative to V .

For further related examples and the main results on the class we refer to the
next section.

2. Main results

To explain the main sense of Definition 1.3, we start with the following partial
characterization:

Theorem 2.1. Let (Xn, n ∈ N) be a sequence in L0(A) such that there exists

a sequence (τn, n ∈ N) of T with (Xτn , n ∈ N) converging in L1 to some

X ∈ L1(A). Then (Xn, n ∈ N) is a {τn}-mil relative to some cofinal subset U

of N if and only if the subsequence (Xu, u ∈ U) converges, a.s.

Proof. Let (Xn, n ∈ N), (τn, n ∈ N) and X be as in the theorem. Then for a
given ε > 0 one can find p1 ∈ N such that for all n ∈ N(p1),

E
(

|Xτn − X|
)

<
ε2

9
·(2.1)

Consequently, by the maximal inequality, (2.1) implies

P
(

sup
q∈N(1,τn)

|Eq(Xτn) − Eq(X)| >
ε

3

)

<
ε

3
·(2.2)

Further, by the martingale limit theorem, there exists p2 ∈ N(p1) such that

P
(

sup
q∈N(p2)

|Eq(X) − X| >
ε

3

)

<
ε

3
·(2.3)

Suppose first that (Xn, n ∈ N) is a {τn}-mil relative to some cofinal subset U

of N . Then by Definition 1.3, there exists p ∈ U(p2) such that for all n ∈ N(p)
we have:

P
(

sup
q∈U(p,τn)

| Eq(Xτn) − Xq| >
ε

3

)

<
ε

3
·
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Thus, given m ∈ N(p), and n ∈ N(m) by (2.2) and (2.3) we have:

P
(

sup
q∈U(p,m)

|Xq − X| > ε
)

≤ P
(

sup
q∈U(p,τn)

|Eq(Xτn) − Xq| >
ε

3

)

+ P
(

sup
q∈U(p,τn)

|Eq(Xτn) − Eq(X)| >
ε

3

)

+ P
(

sup
q∈U(p,τn)

|Eq(X) − X| >
ε

3

)

<
ε

3
+

ε

3
+

ε

3
= ε.

This means that the subsequence (Xu, u ∈ U) converges a.s. to X which proves
the necessary condition.

Conversely, suppose that the last conclusion is true. Then for the same ε > 0
one can choose k ∈ U(p2) such that

P
(

sup
q∈U(k)

|Xq − X| >
ε

3

)

<
ε

3
·

Thus, if n ∈ N(k), by (2.2) and (2.3) we have

P
(

sup
q∈U(k,τn)

|Eq(Xτn) − Xq| > ε
)

< ε.

This proves (1.3) and the theorem.

Example 2.1. There exists a {τn}-mil relative to some cofinal subset U of N

which converges in L1. But it is not a {τn}-mil.

Construction: Let (Xn, n ∈ N) be a sequence in L1(A) which converges in
L1, but does not converge a.s. Let k ∈ N and (τn, n ∈ N) a sequence in T k.
Then the sequence (Xτn , n ∈ N) also converges in L1. Thus, by the theorem
(Xn, n ∈ N) cannot be a {τn}-mil since it does not converge a.s. On the other
hand, (Xn, n ∈ N) is a {τn}-mil relative to some cofinal subset U of N . Hence,
by the L1-convergence of (Xn, n ∈ N) it follows that there exists a cofinal subset
U of N such that the subsequence (Xu, u ∈ U) converges a.s. Thus, by the
theorem (Xn) is a {τn}-mil with respect to U . This completes the construction.

Example 2.2. There exists a {τn}-mil relative to some cofinal subset U of N

which does not converge in L1 and it is not a {τn}-mil.

Construction: Let ([0, 1], B[0,1], P ) be the Lebesgue probability space on [0, 1].

Given k ∈ N , let Qk be the partition of [0, 1] in 2k intervals of equal length and

set a0 = 0, ak =
k

∑

j=1

2j . Then for every n ∈ N there exists a unique k ∈ N

such that ak−1 < n ≤ ak. For this index n, we define An = σ − (Qk) and the
random variable Xn by Xn = 2k on the (n− ak−1)-th interval of Qk and Xn = 0,
elsewhere. Clearly,

a) Xn, n ∈ N , does not converge to zero in L1;
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b) Xn, n ∈ N , converges to zero, in probability.

Now, given k ∈ N , we define the stopping time τk by τk = ak−1 + 1 on the last
interval of Qk, and τk = ak, elsewhere. It can be easily checked that

c) Xτk
≡ 0, k ∈ N .

Thus, by a), b), c) and the theorem the sequence (Xn, n ∈ N) satisfies the first
requirement of the example. Finally, since (Xn, n ∈ N) does not converge a.s,
by c) and the theorem it cannot be a {τn}-mil. This completes the construction.

For other related examples, the interested reader is refered to Talagrand [5]
and Luu [2].

Now we are going to prove the main result.

Theorem 2.2. Let (Xn, n ∈ N) be a {τn}-mil relative to some cofinal subset U

of N , with

lim inf
n∈N

E(|Xτn |) < ∞.

Then the subsequence (Xu, u ∈ U) converges a.s to some X ∈ L1(A).

Proof. Let (Xn, n ∈ N), (τn, n ∈ N) and U be as in the theorem. Then, by
passing to a subsequence of (τn, n ∈ N) if necessary, we can assume that

sup
n∈N

E(|Xτn |) < ∞,(2.4)

Assume on the contrary that (Xu, u ∈ U) does not converge a.s. Then by
adding to all Xu, u ∈ U , a suitable common constant if necessary, there exists a
positive number a > 0 such that p(A) > 0, where

A =
{

lim sup
u∈U

Xu >
5a

4
, lim inf

u∈U
Xu < 0

}

.

We shall show that this assumption implies that sup
n∈N

E(|Xτn |) = ∞ which con-

tradicts (2.4), hence (Xu, u ∈ U) converge a.s. To do this we make the following
claim:

For every n1 ∈ N and 0 < ε <
P (A)

4
there exists n2 ∈ N(n1) such that for

each E ∈ Aτn1
with P (E) <

P (A)

2
and n ∈ N(n2) there exists M ∈ Aτn2

with

M ∩ E = φ, P (M) < ε and such that
∫

M

XτndP >
aP (A)

4
·(2.5)

To prove the claim, let n1 ∈ N and 0 < ε <
P (A)

4
be given. Then by the

assumption on (An, n ∈ N) and Definition 1.3 one can find a large enough
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k ∈ U(n1) and B ∈ Ak with P (A∆B) <
ε

4
such that for each n ∈ N(k) we have:

P
(

sup
q∈U(k,τn)

|Eq(Xτn) − Xq| >
a

8

)

<
ε

2
·(2.6)

Firstly, since

A ⊂
{

lim sup
u∈U

Xu >
5a

4

}

⊂
{

sup
u∈U(k)

Xu >
5a

4

}

,

there exists σ ∈ T with P ({σ ∈ U(k)}) = 1 such that

P
(

A ∩
{

Xσ >
5a

4

}

)

> P (A) −
ε

4
·(2.7)

Similarly, since

A ∩
{

Xσ >
5a

4

}

⊂
{

lim inf
u∈U

Xu < 0
}

⊂
{

inf
u∈U(σ+)

Xu < 0
}

,

there exists another γ ∈ T with P ({γ ∈ U(σ+)}) = 1 such that

P
(

A ∩
{

Xσ >
5a

4

}

\ {Xγ < 0}
)

<
ε

4
·

By a simple estimation we have

P
(

B ∩
{

Xσ >
5a

4

}

\ {Xγ < 0}
)

≤ P
(

A ∩
{

Xσ >
5a

4

}

\ {Xγ < 0}
)

(2.8)

+ P
([

A ∩
{

Xσ >
5a

4

}

]

∆
[

B ∩
{

Xγ >
5a

4

}

])

<
ε

4
+ P (A∆B)

<
ε

4
+

ε

4
=

ε

2
·

Now set n2 = γ+ and let n ∈ N(n2), E ∈ Aτn1
with P (E) <

P (A)

2
be given.

We define

C =
{

|Eσ(Xτn) − Xσ| >
a

8

}

,

D =
{

|Eγ(Xτn) − Xγ | >
a

8

}

.

Then by (2.6) we have

max{P (C), P (D)} ≤ P
(

sup
q∈U(k,τn)

|Eq(Xτn) − Xq| >
a

8

)

<
ε

2
·(2.9)

Thus, if we put

C1 = B ∩
{

Xσ >
5a

4

}

\ (C ∪ E)
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then by (2.7) and (2.8) we obtain

P (C1) ≥ P
(

B ∩
{

Xσ >
5a

4

}

)

− P (C) − P (E)

≥ P
(

A ∩
{

Xσ >
5a

4

}

)

− P (A∆B) −
ε

2
−

P (A)

2

> P (A) −
ε

4
−

ε

4
−

ε

2
−

P (A)

2
=

P (A)

2
− ε.

This implies

P (C1) >
P (A)

4
·(2.10)

Note that C1 ∈ Aσ and on C1 we have

Eσ(Xτn) > Xσ −
a

8
>

5a

8
−

a

8
=

9a

8
·

Hence
∫

C1

XτndP =

∫

C1

Eσ(Xτn)dP >
9aP (C1)

8
·(2.11)

Similarly, set

D1 = C1 ∩ {Xγ < 0} \ D.

Then D1 ∈ Aγ and on D1 we have

Eσ(Xτn) < Xτn −
a

8
<

a

8
·

Hence
∫

D1

XτndP =

∫

D1

Eγ(Xτn)dP <
aP (D1)

8
≤

aP (C1)

8
·

This together with (2.10) and (2.11) yield
∫

C1\D1

XτndP >
9aP (C1)

8
−

aP (C1)

8
= aP (C1) >

aP (A)

4
·(2.12)

Thus, if we take M = C1 \D1 then M ∈ Aτn2
, M ∩E ⊂ C1 ∩E = φ and by (2.8)

we have

P (M) = P (C1 \ [C1 ∩ {Xj < 0} \ D])

≤ P ([C1 \ {Xγ < 0}]) + P (D)

< P
(

B ∩
{

Xσ >
5a

4

}

\ {Xγ < 0}
)

+
ε

2

<
ε

2
+

ε

2
= ε.

This together with (2.12) prove (2.5) and the claim.
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Using the claim we can construct by induction an increasing sequence (np, p ∈

N) of N with the following property: For E ∈ Aτnp
with P (E) <

P (A)

2
and

n ∈ N(np+1) there exists M ∈ Aτnp+1
with M ∩ E = φ, P (M) < 2−(p+1)P (A)

such that

∫

M

XτndP >
aP (A)

4
. Thus, given p ∈ N(2), we can construct by finite

induction disjoint sets (Mj)j≤p with M1 = φ, Mj ∈ Aτnj
P (Mj) < 2−jP (A)

and
∫

Mj

XτndP >
aP (A)

4
, 2 ≤ j ≤ p.

This implies that

E(|Xτn |) ≥

∫

M

XτndP >
(p − 1)aP (A)

4
,

where

M =

p
∑

j=1

Mj .

Therefore,

sup
n∈N

E(|Xτn |) = ∞

which contradicts (2.4). Thus, (Xu, u ∈ U) converge a.s.

Finally, to complete the proof it remains to show that if (Xu, u ∈ U) converges
a.s. to some X ∈ L0(A) then X ∈ L1(A). This fact is not trivial at all since one
cannot apply Fatou’s lemma directly neither to the subsequence (Xu, u ∈ U) nor
to (Xτn , n ∈ N). However, since U is cofinal, by passing to a subsequence of
(τn, n ∈ N) if necessary, we can suppose also that the sequence (u(n), n ∈ N)
with

u(n) = max{q ∈ U : q ≤ τn}, n ∈ N,

is a well-defined strictly increasing subsequence of U . Moreover, by Definition
1.3 the sequence (Yn, n ∈ N) converges to zero in probability, where

Yn = Eu(n)(Xτn) − Xu(n), n ∈ N.

Therefore, there exists a cofinal subset V of N such that (Yv, v ∈ V ) converges
to zero a.s. This fact together with Fatou’s lemma show that

E(|X|) = E
(

lim
u∈U

|Xu|
)

= E
(

lim
v∈V

|Xu(v)|
)

= E
(

lim
v∈V

|Eu(v)(Xτv )|
)

≤ lim inf
v∈V

E
(

|Eu(v)(Xτv )|
)

≤ lim inf
v∈V

E
(

|Xτv |
)

≤ sup
n∈N

E
(

|Xτv |
)

< ∞.

This proves the integrability of X and hence the proof is complete.
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In conclusion, it is worth noting that the proof of the theorem is based on a
stopping time technique and follows from the pattern of the proof of Theorem 2
of [2]. However, the construction is completely different. Further, the proof of
Theorem 4 of [2] could not be applied to prove the theorem since in that proof
the author essentially used the fact that if (Xn, n ∈ N) is a {τn}-mil then the
sequence (Xτn , n ∈ N) is a mil w.r.t. (Aτn , n ∈ N). For more information the
reader is refered again to the previous examples.

References

[1] G. A. Edgar and L. Sucheston, Stopping times and directed processes, Encyclopedia of
Math. and its Applications 47, Cambridge University Press, 1992.

[2] D. Q. Luu, On further classes of martingale-like-sequences and some decomposition and

convergence theorems, Glasgow Math. J. 41 (1999), 313-322.
[3] A. Mucci, Another martingale convergence theorem, Pacific J. Math. 64 (1976), 539-541.
[4] J. Neveu, Discrete parameter martingales, North-Holland Math. Library, 1975.
[5] M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann.

Probab. 13 (1985), 1192-1203.

Institute of Mathematics

P.O. Box 631, Bo Ho, Hanoi, Vietnam


