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GENERALIZED QUASICONVEXITY VIA PROPERLY

CHARACTERISTIC FUNCTIONS ASSOCIATED

TO BINARY RELATIONS

NICOLAE POPOVICI

Abstract. As shown by Dinh The Luc in his well-known monograph on vec-
tor optimization, the cone-quasiconvex vector-valued functions can be char-
acterized in terms of scalar quasiconvexity by means of the smallest strictly
monotonic functions. The aim of this paper is to show that similar characteri-
zations can be given for the general class of (Γ, Ω)-quasiconvex functions, this
time by means of the so-called properly characteristic functions associated to
the binary relation Ω.

1. Introduction

Among various notions of generalized quasiconvexity which have been applied
in vector optimization (see [3], [5] or [1] and references therein), the concept of
cone-quasiconvexity introduced by Dinh The Luc in [4] for vector-valued functions
is of special interest because it can be characterized in terms of convex level sets.
Recall that a function f : X → E2 defined on a nonempty convex subset X of
a vector space E1 which takes values in a vector space E2, partially ordered by
a convex cone C, is called C-quasiconvex on X if for any points x1, x2 ∈ X and
y ∈ E2 one has

y ∈
[

f(x1) + C
]

∩
[

f(x2) + C
]

=⇒ f(tx1 + (1 − t)x2) ∈ y − C, ∀ t ∈ [0, 1].

In other words, the function f is C-quasiconvex on X if for any point y ∈ E2 the
level set Lf (y) = {x ∈ X | f(x) ∈ y − C} is convex. This property shows that,
at least in the particular case when E2 = R

n is the Euclidean space partially
ordered by the standard positive cone C = R

n
+, there is a direct relationship

between the cone-quasiconvexity and the scalar quasiconvexity. In fact, a function
f = (f1, . . . , fn) : X → R

n is R
n
+-quasiconvex on a convex set X if and only if its

scalar components f1, . . . , fn are quasiconvex on X in the usual sense. Besides
this component-wise setting it was shown in [5] that if E2 is a topological vector
space, partially ordered by a closed convex cone C which has nonempty interior,
then a function f : X → E2 is C-quasiconvex on a convex set X if and only if, for
any point a ∈ E2, the composite function he,a ◦ f : X → R is quasiconvex on X
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in the usual sense, where he,a : E2 → R denotes the “smallest strictly monotonic
function” defined by

he,a(x) = min{t ∈ R | x ∈ a + te − C}, ∀ x ∈ E2(1.1)

for an arbitrary fixed point e ∈ intC.

In this paper we shall show that a similar characterization in terms of scalar
quasiconvexity can be given for the class of (Γ,Ω)-quasiconvex functions, which
was introduced by us in [7] in order to describe in a unifying way those functions
which possess the characteristic property to have convex level sets. The next
section is devoted to recall this concept.

2. (Γ,Ω)-quasiconvex functions

Let E1 be a nonempty set and let Γ : E1 × E1 → 2E1 be a set-valued map,
which assigns to each pair of points from E1 a subset of E1. We say that a subset
X of E1 is:

(i) Γ-convex, if Γ(x1, x2) ⊂ X, ∀ x1, x2 ∈ X;

(ii) Γ-convex with respect to a point x0 ∈ X, if Γ(x, x0) ⊂ X, ∀ x ∈ X.

Remark that even if Γ is not symmetric, a nonempty set X ⊂ E1 is Γ-convex
if and only if it is Γ-convex with respect to all its points. In this paper, such
Γ-convex sets will play the role of the domain for some generalized quasiconvex
functions. As codomain of these functions, we shall consider a nonempty set E2

endowed with a binary relation Ω ⊂ E2 × E2, which will be identified with the
set-valued map Ω : E2 → 2E2 , given by

Ωy = {y′ ∈ E2 | (y, y′) ∈ Ω}, ∀ y ∈ E2.

As usual, for any y ∈ E2, we denote Ω−y = {y′ ∈ E2 | y ∈ Ωy′} and Ωcy =
E2 \ (Ωy).

Definition 2.1. Let X be a nonempty subset of E1, which is Γ-convex with
respect to a point x0 ∈ X. A function f : X → E2 is called (Γ,Ω)-quasiconvex
at x0 if

∀ x ∈ X, f(x) ∈ Ωf(x0) =⇒ f(Γ(x, x0)) ⊂ Ωf(x0).

Definition 2.2. Let X be a nonempty and Γ-convex subset of E1. A function
f : X → E2 is called (Γ,Ω)-quasiconvex on X if

∀ x1, x2 ∈ X, ∀y ∈ E2, f({x1, x2}) ⊂ Ωy =⇒ f(Γ(x1, x2)) ⊂ Ωy.

Remark 2.1. If Ω is reflexive and f : X → E2 is (Γ,Ω)-quasiconvex on a non-
empty and Γ-convex set X ⊂ E1 then f is (Γ,Ω)-quasiconvex at every point of X.
As shown by us in [8], the converse is true whenever Ω is transitive and complete
and Γ is symmetric, each of these assumptions being essential.
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Remark 2.2. Let E2 = R be endowed with the usual order relation Ω =′′≥′′

defined for all y ∈ R by Ωy =] − ∞, y] and let f : X → R be defined on a
nonempty Γ-convex set X ⊂ E1. The following assertions hold:

(i) f is (Γ,Ω)-quasiconvex at a point x0 ∈ X, if and only if

∀ x ∈ X, f(x) ≤ f(x0) =⇒ ∀ x′ ∈ Γ(x, x0), f(x′) ≤ f(x0);

(ii) f is (Γ,Ω)-quasiconvex on X, if and only if

∀ x1, x2 ∈ X, ∀ x ∈ Γ(x1, x2) =⇒ f(x) ≤ max{f(x1), f(x2)}.

Remark 2.3. When E1 and E2 are vector spaces and C is a convex cone in E2,
then for Γ and Ω defined by

Γ(x1, x2) = co{x1, x2}, ∀ x1, x2 ∈ E1 and Ωy = y − C, ∀ y ∈ E2,

the (Γ,Ω)-quasiconvexity coincides with the C-quasiconvexity in the sense of Dinh
The Luc.

The propositions below show that the (Γ,Ω)-quasiconvexity is a natural ex-
tension of the cone-quasiconvexity since it can also be characterized in terms of
some appropriate generalized level sets, defined for any y ∈ E2 by

Lf (y) = {x ∈ X | f(x) ∈ Ωy}.

Proposition 2.1. Let X ⊂ E1 be Γ-convex with respect to x0 ∈ X and let f :
X → E2. If f(x0) ∈ Ωf(x0), then the function f is (Γ,Ω)-quasiconvex at x0 if

and only if the set Lf (f(x0)) is Γ-convex with respect to x0.

Proposition 2.2. Let f : X → E2 be defined on a nonempty and Γ-convex set

X ⊂ E1. Then the function f is (Γ,Ω)-quasiconvex on X if and only if for any

point y ∈ E2 the set Lf (y) is Γ-convex.

Some other characterizations of the (Γ,Ω)-quasiconvexity in terms of polarities
in the sense of Dolecki and Malivert [2] or in terms of level sets can be found in
[8] or [7]. In what follows we will focus on the relationship between the (Γ,Ω)-
quasiconvexity and the scalar quasiconvexity.

3. Properly characteristic functions

As in the previous section, E1 and E2 denote two nonempty sets endowed
with the set-valued maps Γ : E1 × E1 → 2E1 and Ω : E2 → 2E2 , the latter one
representing a binary relation on E2. The definition below plays a key role in the
sequel.

Definition 3.1. Let λ be a real number. A function g : E2 × E2 → R is called

(i) λ-characteristic for the binary relation Ω, if for any y1, y2 ∈ E2, one has

g(y1, y2) ≤ λ ⇐⇒ y1 ∈ Ωy2;
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(ii) properly λ-characteristic if, in addition, there exists y0 ∈ E2 such that

g(y1, y0) ≤ g(y2, y0) ≤ λ < g(y3, y0),

whenever g(y1, y) ≤ g(y2, y) < g(y3, y) for some y, y1, y2, y3 ∈ E2.

Example 3.1. Consider the Heaviside-type function h : E2 × E2 → R defined
by

h(y1, y2) =

{

0 if y1 ∈ Ωy2,

1 if y1 ∈ Ωcy2.

It is easy to see that h is 0-characteristic for Ω. Moreover, h is properly 0-
characteristic since for all y, y1, y2, y3 ∈ E2 such that

h(y1, y) ≤ h(y2, y) < h(y3, y)

we actually have h(y1, y) = h(y2, y) = 0 and h(y3, y) = 1. Hence y0 = y satisfies
the property in demand.

Example 3.2. The “signum”-type function s : E2 × E2 → R, defined by

s(y1, y2) =







−1 if y1 ∈ [Ω ∩ (Ω−)c]y2

0 if y1 ∈ (Ω ∩ Ω−)y2

1 if y1 ∈ Ωcy2

is 0-characteristic for Ω, but it is not properly characteristic in general. For
instance, if E2 = R

2 and Ωy = y − R
2
+, ∀ y ∈ R

2 then by taking y1 = (1, 0), y2 =

(0, 1), y3 = (1, 1) and y = y3 we have s(y1, y) = s(y2, y) = −1 < s(y3, y) = 0, but
the condition

s(y1, y0) ≤ s(y2, y0) ≤ 0 < s(y3, y0)

cannot be satisfied because it is equivalent with

y0 ∈ (y1 + R
2
+) ∩ (y1 + R

2
+) \ (y3 + R

2
+) = ∅.

As shown in the following theorem, a special class of properly characteristic
functions can be constructed in partially ordered topological vector spaces by
means of the smallest strictly monotonic functions.

Theorem 3.1. Let E2 be a topological vector space and let Ωy = y − C for any

y ∈ E2, where C ⊂ E2 is a closed convex cone, which has nonempty interior.

Then, the function g : E2 × E2 → R defined by

g(y1, y2) = he,y2(y1), ∀ y1, y2 ∈ E2(3.1)

is properly 0-characteristic for Ω.

Proof. Let us firstly remark that according to (1.1) we have, for any y1, y2 ∈ E2,

g(y1, y2) = min{t ∈ R | y2 − y1 + te ∈ C} = min{t ∈ R | y1 ∈ Ω(y2 + te)}.

Now, for proving that g is 0-characteristic for Ω, it is easy to see that if y1, y2 ∈ E2

are such that y1 ∈ Ωy2 then g(y1, y2) ≤ 0. Conversely, if g(y1, y2) ≤ 0 then
taking into account that C is a cone, we have −g(y1, y2)e ∈ C and therefore
y2 − y1 ∈ y2 − y1 + g(y1, y2)e + C. On the other hand, by the definition of
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g(y1, y2) we have y2 − y1 + g(y1, y2)e ∈ C. Then, by the convexity of the cone C

we infer y2 − y1 ∈ C, that is y1 ∈ Ωy2.

In order to prove that g is properly characteristic, let y, y1, y2, y3 ∈ E2 be such
that

g(y1, y) ≤ g(y2, y) < g(y3, y).(3.2)

By considering y0 = y + g(y2, y)e and by taking into account that

g(yi, y0) = min{t ∈ R | y − yi + [t + g(y2, y)]e ∈ C}

= g(yi, y) − g(y2, y), ∀ i ∈ {1, 2, 3}

we can deduce, by substracting g(y2, y) in (3.2), that

g(y1, y0) ≤ g(y2, y0) ≤ 0 < g(y3, y0).

4. Scalar characterizations of the (Γ,Ω)-quasiconvexity

The aim of this section is to show that the (Γ,Ω)-quasiconvexity can be charac-
terized in terms of scalar quasiconvexity by using certain characteristic functions.
The following theorems extend some similar results, which have been obtained
by Dinh The Luc in [6] by using the particular function g defined by (3.1) in a
vectorial framework.

Theorem 4.1. Let X ⊂ E1 be Γ-convex with respect to a point x0 ∈ X and let

f : X → E2. If the function g : E2 × E2 → R is λ0-characteristic for Ω, where

λ0 = g(f(xo), f(x0)), then the following assertions are equivalent:

(i) f is (Γ,Ω)-quasiconvex at x0;

(ii) g(f(·), f(x0)) : X → R is (Γ,≥)-quasiconvex at x0.

Proof. By Definition 2.1, the assertion (i) is equivalent to:

∀x ∈ X, f(x) ∈ Ωf(x0) =⇒ ∀x′ ∈ Γ(x, x0), f(x′) ∈ Ωf(x0).

Since g is λ0-characteristic for Ω, this condition can be rewritten as

∀x ∈ X, g(f(x), f(x0)) ≤ λ0 =⇒ ∀x′ ∈ Γ(x, x0), g(f(x′), f(x0)) ≤ λ0.

By virtue of Remark 2.2 and taking into account that λ0 = g(f(xo), f(x0)), the
above condition means exactly (ii).

Lemma 4.1. Let f : X → E2 be a function defined on a nonempty and Γ-convex

set X ⊂ E1 and let g : E2 × E2 → R be λ-characteristic for Ω, with respect to

some λ ∈ R. If the function g(f(·), y) : X → R is (Γ,≥)-quasiconvex on X, for

every point y ∈ E2, then f is (Γ,Ω)-quasiconvex on X.

Proof. Suppose on the contrary that f is not (Γ,Ω)-quasiconvex on X. Then,
according to Definition 2.2, there exist x1, x2 ∈ X, y ∈ E2 and x0 ∈ Γ(x1, x2)
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such that f(x1), f(x2) ∈ Ωy and f(x0) ∈ Ωcy. The function g is λ-characteristic
for Ω and according to Definition 3.1 i) we obtain

g(f(x1), y) ≤ λ, g(f(x2), y) ≤ λ and g(f(x0), y) > λ.(4.1)

On the other hand, since g(f(·), y) is (Γ,≥)-quasiconvex on X, we have

g(f(x), y) ≤ max{g(f(x1), y), g(f(x2), y)} ∀x ∈ Γ(x1, x2)

by virtue of Remark 2.2. In particular, for x = x0 we obtain a contradiction with
(4.1).

Theorem 4.2. Let f : X → E2 be a function defined on a nonempty and Γ-

convex set X ⊂ E1 and let g : E2×E2 → R be a properly λ-characteristic function

for Ω, with respect to some λ ∈ R. The following assertions are equivalent:

(i) f is (Γ,Ω)-quasiconvex on X;

(ii) g(f(·), y) : X → R is (Γ,≥)-quasiconvex on X, for any point y ∈ E2.

Proof. In view of Lemma 4.1 we just need to prove the implication (i) ⇒ (ii).

For this aim, suppose on the contrary that there exists y ∈ E2 such that
g(f(·), y) is not (Γ,≥)-quasiconvex on X. Then, in view of Remark 2.2, there
exist x1, x2 ∈ X and x3 ∈ Γ(x1, x2) such that

g(f(x3), y) > max{g(f(x1), y), g(f(x2), y)}.

Without loss of generality, we can suppose that g(f(x1), y) ≤ g(f(x2), y). The
function g is properly λ-characteristic for Ω. According to Definition 3.1 (ii)
applied for y1 = f(x1), y2 = f(x2) and y3 = f(x3), we can find a point y0 ∈ E2

such that

g(f(x1), y0) ≤ g(f(x2), y0) ≤ λ < g(f(x3), y0).

According to Definition 3.1 (i), we deduce that f(x1), f(x2) ∈ Ωy0 and f(x3) ∈
Ωcy0. Finally, since x3 ∈ Γ(x1, x2), we infer

f({x1, x2}) ⊂ Ωy0 and f(Γ(x1, x2)) 6⊂ Ωy0,

contradicting the assumption (i).

5. Conclusions

We have shown that the (Γ,Ω)-quasiconvex functions can be characterized in
terms of scalar quasiconvexity by means of the properly characteristic functions
associated to the binary relation Ω. Beyond the classical framework of quasicon-
vex vector optimization, where Γ is the convex hull operator and Ω is the partial
order induced by a convex cone, our results may be useful for studying the struc-
ture of the efficient solutions set of more general optimization problems involving
(Γ,Ω)-quasiconvex objective functions. Such problems arise, for instance, when
the decision maker needs to consider a preference relation Ω which is defined in the
image space by a supplementary utility function, this one being directly related
to a properly characteristic function associated to Ω. On the other hand, by con-
sidering the concept of Γ-convexity, our study may be applied for a large class of
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optimization problems involving non-convex feasible sets, whenever some general-
ized convexity concepts are considered, such as: midpoint- or rational-convexity,
polygonal-convexity, metric-convexity, or other specific convexity notions which
appear for instance in transportation problems on graphs.
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