SOME CONDITIONS FOR NONEMPTINESS OF γ -SUBDIFFERENTIALS OF γ -CONVEX FUNCTIONS

NGUYEN NGOC HAI

ABSTRACT. γ -subdifferential is a concept which can be used for global optimization. If x_* is a global minimizer of an arbitrary function f then $0 \in$ $\partial_{\gamma} f(x_*)$, where $\partial_{\gamma} f(x_*)$ is the γ -subdifferential of f at x_* . In particular, $\partial_{\gamma}f(x_*)\neq\emptyset$ at a global minimizer x_* . In this paper we investigate the nonemptiness and the monotonicity of γ -subdifferentials of γ -convex functions. Some sufficient conditions are stated for the nonemptiness of the γ subdifferential of a symmetrically γ -convex function at a point. It is proved that for a symmetrically γ -convex function, the Gâteaux derivative (when it exists) at a point belongs to the γ -subdifferential at that point. A relation between the γ -subdifferential and the Clarke generalized gradient of a symmetrically γ -convex function is also presented.

1. INTRODUCTION

Global optimization is a very active field of mathematical programming. To find an extremum of a given function f , a popular method is to seek all the local extrema and then compare them. If f is differentiable then a necessary condition for local extremality is $f'(x_*) = 0$. Since, however, many functions are not differentiable, new tools generalizing the concept of differential have been introduced. For convex functions, subdifferentials are often used where derivatives do not exist. If f is convex, a necessary and sufficient condition for x_* to be a local (and also a global) minimizer is $0 \in \partial f(x_*)$, where $\partial f(x_*)$ denotes the subdifferential of f at x_* . For locally Lipschitzian functions, in order to to seek a local extremum, one may solve the inclusion $0 \in \partial f(x)$ where $\partial f(x)$ is now the Clarke generalized gradient of f at x .

In [5–6], H. X. Phu introduced the notion of γ -subdifferential $\partial_{\gamma} f$ of an arbitrary function f and proved that $0 \in \partial_{\gamma} f(x_*)$ is a necessary condition for a global minimizer. For a γ -convex function, this condition implies that if it has a global minimum, there is a global minimizer near x_* . Some basic properties of $\partial_{\gamma} f(x)$ of an arbitrary function f were investigated in [5–6] (in [5], γ is not a constant, it is a continuous and positive function such that $x + \gamma(x)$ is strictly increasing).

Received January 14, 2000; in revised form December 14, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 46G05, 47H04, 49J52, 52A01, 54C60.

Key words and phrases. Generalized convexity, rough convexity, γ -convexity, generalized gradient, γ -subdifferential.

138 NGUYEN NGOC HAI

In this paper we first consider the monotonicity of γ -subdifferentials of γ -convex functions and prove that in multidimensional pre-Hilbert spaces, γ -subdifferential of each additive function that is not linear is empty at every point (see Section 2). Then, in Section 3, we restrict ourselves to symmetrically γ -convex functions and state some conditions under which the γ -subdifferential of a symmetrically γ -convex function is nonempty. We establish a relation between Gâteaux derivatives and γ -subdifferentials of symmetrically γ -convex functions. It is also shown that under some assumptions, the Clarke generalized gradient of a symmetrically γ -convex function at a point is a subset of its γ -subdifferential at that point. From this result it follows that for a symmetrically γ -convex function on a finite dimensional space, its γ -subdifferential at certain points is always nonempty.

2. Definitions and some properties

Let X be a real normed space and γ be a fixed positive number. Consider a function f whose effective domain is D, i.e. such that $D = \{x \mid f(x) < +\infty\}$ (in this paper we assume that $f(x) > -\infty$ for all $x \in X$). For the convenience of the reader we recall from [6] the definition of the γ -subdifferential of the function f and its properties.

First let us introduce some notations. For an $r > 0$, set

$$
S_r(x) = \{y \in X : ||y - x|| = r\}, \quad S = S_1(0),
$$

\n
$$
\mathcal{U}_r(x) = \{y \in X : ||y - x|| \le r\},
$$

\n
$$
int_r D = \{x \in D : \exists r' = r'(x) > r, \ \mathcal{U}_{r'}(x) \subset D\}.
$$

Definition 2.1. The γ -subdifferential of f at $x \in D$, denoted by $\partial_{\gamma} f(x)$, is the subset of the dual space X^* given by

$$
\{\xi \in X^* : \text{ for } s \in S, \text{ there exists } \lambda \in [0, \gamma] \text{ such that } \gamma \langle \xi, s \rangle \le f(x + \lambda s) - f(x - (\gamma - \lambda)s) \}.
$$

In other words,

$$
\partial_{\gamma}f(x) = \{ \xi \in X^* : \text{ for } s \in S, \text{ there exist } x' \text{ and } x'' \text{ such that } x' - x'' - \gamma s, \ x \in [x', x''], \ \langle \xi, x' - x'' \rangle \le f(x') - f(x'') \}.
$$

Here, $[x', x'']$ denotes the closed line segment with endpoints x' and x'' .

Proposition 2.1. [6, Theorem 2.1] Let

$$
\Delta_{f,\gamma}(x,s) := \left\{ \frac{f(x') - f(x'')}{\gamma} : x \in [x', x''], x' - x'' = \gamma s \right\}, \ x \in D, \ s \in S.
$$

Then

$$
\partial_{\gamma} f(x) = \{ \xi \in X^* : \langle \xi, s \rangle \in \text{ conv } \Delta_{f, \gamma}(x, s), \ s \in S \}.
$$

If f is continuous on $\mathcal{U}_{\gamma}(x)$ then

$$
\partial_{\gamma}f(x) = \{ \xi \in X^* : \langle \xi, s \rangle \in \Delta_{f,\gamma}(x,s), \ s \in S \}.
$$

Corollary 2.1. [6, Proposition 2.1] Let $X = \mathbb{R}$ and

$$
\mathcal{M}_{f,\gamma}(x):=\Big\{\frac{f(x'+\gamma)-f(x')}{\gamma}: \ x\in [x',x'+\gamma]\subset \mathbb{R}, \ x'\in D\Big\}, \ x\in D.
$$

Then $\partial_{\gamma} f(x) = \text{conv} \mathcal{M}_{f,\gamma}(x)$. If f is continuous on $[x - \gamma, x + \gamma] \subset D \subset \mathbb{R}$ then $\partial_{\gamma}f(x) = \mathcal{M}_{f,\gamma}(x).$

Corollary 2.2. [6, Corollary 2.1] Let $x \in D$ and $S_D(x) := \{s \in S : x + \gamma s \in D\}.$ Then,

(2.1)
$$
\partial_{\gamma} f(x) = \{ \xi \in X^* : \langle \xi, s \rangle \in \operatorname{conv} \Delta_{f, \gamma}(x, s), s \in S_D(x) \}.
$$

Corollary 2.1 shows that the γ -subdifferential of a function on the real line is convex at each point. This is also true for functions on a normed space.

Proposition 2.2. [6, Propositions 2.2–2.3] Suppose $f : D \subset X \to \mathbb{R}$. Then

- (a) $\partial_{\gamma} f(x)$ is convex for all $x \in D$ and
- (b) $\partial_{\gamma} f(x)$ is compact if dim $X < \infty$ and f is continuous on $\mathcal{U}_{\gamma}(x)$.

 γ -subdifferential can be used for global optimization. More precisely, we have

Proposition 2.3. Let $f: D \to \mathbb{R}$.

- (i) If $f(x^*) \leq f(x)$ for $x \in \mathcal{U}_{\gamma}(x^*) \cap D$ then $0 \in \partial_{\gamma}f(x^*)$.
- (ii) If $f(x^*) \ge f(x)$ for $x \in \mathcal{U}_{\gamma}(x^*) \cap D$ then $0 \in \partial_{\gamma} f(x^*)$.

This proposition gives a necessary condition for global optimization, see [6, Theorems 4.1–4.2. For any γ -convex function f, if it has a global minimum then the inclusion $0 \in \partial_{\gamma} f(x^*)$ will be a sufficient condition for a global minimizer near x^* as the next proposition shows.

From now on, we assume that D is a nonempty convex subset of X .

Definition 2.2. A function $f: D \to \mathbb{R}$ is said to be

- (i) γ -convex if $x_0, x_1 \in D$, $||x_1 x_0|| \ge \gamma$ imply $f(x'_0) + f(x'_1) \le f(x_0) + f(x_1)$;
- (ii) symmetrically γ -convex if $x_0, x_1 \in D$, $|x_1 x_0| \ge \gamma$ imply

$$
f(x'_0) \le \left(1 - \frac{\gamma}{\|x_1 - x_0\|}\right) f(x_0) + \frac{\gamma}{\|x_1 - x_0\|} f(x_1),
$$

$$
f(x'_1) \le \frac{\gamma}{\|x_1 - x_0\|} f(x_0) + \left(1 - \frac{\gamma}{\|x_1 - x_0\|}\right) f(x_1),
$$

$$
f(x_1) \le \frac{\gamma}{\|x_1 - x_0\|} f(x_0) + \left(1 - \frac{\gamma}{\|x_1 - x_0\|}\right) f(x_1),
$$

where $x'_0 := x_0 + \gamma \frac{x_1 - x_0}{\|x\| \cdot \|x\|}$ $\frac{x_1 - x_0}{\|x_1 - x_0\|}$, $x'_1 := x_1 - \gamma \frac{x_1 - x_0}{\|x_1 - x_0\|}$ $\frac{x_1 - x_0}{\|x_1 - x_0\|}$.

Obviously, a symmetrically γ -convex function is also γ -convex.

The following may be useful for optimization of γ -convex functions.

Proposition 2.4. [6, Theorems 4.3–4.4] Suppose that $f : D \subset X \to \mathbb{R}$ is γ convex and $x^* \in D$.

(i) If $f(x_*) \leq f(x)$ for all $x \in \mathcal{U}_{\gamma}(x_*) \cap D$ then x_* is a global minimizer.

(ii) If $0 \in \partial_{\gamma} f(x^*)$ then for each $x_0 \in D \backslash \mathcal{U}_{\gamma}(x^*)$ there exists an $x_k \in \mathcal{U}_{\gamma}(x^*) \cap D$ with $f(x_k) \leq f(x_0)$.

(iii) If $0 \in \partial_{\gamma} f(x^*)$ and if $f(x_*) \leq f(x)$ for all $x \in \mathcal{U}_{\gamma}(x^*) \cap D$ then x_* is a global minimizer.

We now present another formula which describes γ -subdifferentials of γ -convex functions.

Proposition 2.5. Suppose that $f: D \subset X \to \mathbb{R}$ is γ -convex and $x \in D$. Then (2.2) $\partial_{\gamma} f(x) = \left\{ \xi \in X^* : \langle \xi, s \rangle \leq \frac{f(x + \gamma s) - f(x)}{\gamma}, \ s \in S_D(x) \right\}.$

Proof. Let A be the right hand side of (2.2). If $\xi \in A$ then

 $\gamma \langle \xi, s \rangle \leq f(x + \gamma s) - f(x)$ for all $s \in S$

because $f(x + \gamma s) - f(x) = \infty$ whenever $s \notin S_D(x)$. Choosing $x' = x + \gamma s$ and $x'' = x$, we have $\gamma \langle \xi, s \rangle \leq f(x') - f(x'')$. Hence $\xi \in \partial_{\gamma} f(x)$, so that $\mathcal{A} \subset \partial_{\gamma} f(x)$. Conversely, suppose $\xi \in \partial_{\gamma} f(x)$. For $s \in S_D(x)$, there are $x', x'' \in X$ satisfying

$$
x'-x''=\gamma s, \ x\in [x',x''] \quad \text{and} \quad \gamma\langle \xi, s\rangle \le f(x')-f(x'').
$$

Since f is γ -convex and $x, x' \in [x'', x + \gamma s],$

$$
f(x') - f(x'') \le f(x + \gamma s) - f(x).
$$

Hence

$$
\gamma \langle \xi, s \rangle \le f(x + \gamma s) - f(x) \quad \text{for all} \quad s \in S_D(x).
$$

Thus $\xi \in \mathcal{A}$ and $\partial_{\gamma} f(x) \subset \mathcal{A}$. Consequently, $\mathcal{A} = \partial_{\gamma} f(x)$.

Corollary 2.3. Suppose $f: D \subset \mathbb{R} \to \mathbb{R}$ is γ -convex. Let

$$
D_{\gamma}^{+} = \{x \in D : x + \gamma \in D\},\
$$

$$
D_{\gamma}^{-} = \{x \in D : x - \gamma \in D\}.
$$

(a) $\partial_{\gamma} f(x) = \mathbb{R}$ if $x \in D \setminus (D_{\gamma}^{+} \cup D_{\gamma}^{-})$, and $\partial_{\gamma} f(x) =]-\infty$, $(f(x + \gamma) - f(x))/\gamma]$ if $x \in D^+_\gamma \setminus D^-_\gamma$.

(b)
$$
\partial_{\gamma} f(x) = [(f(x) - f(x - \gamma))/\gamma, (f(x + \gamma) - f(x))/\gamma]
$$
 if $x \in D_{\gamma}^+ \cap D_{\gamma}^-$.
(c) $\partial_{\gamma} f(x) = [(f(x) - f(x - \gamma))/\gamma, +\infty]$ if $x \in D_{\gamma}^- \setminus D_{\gamma}^+$.

Proof. (a) Suppose $x \in D \setminus D_{\gamma}^-$. If $x \notin D_{\gamma}^+$ then $S_D(x) = \emptyset$ and (2.2) yields $\partial_{\gamma} f(x) = \mathbb{R}$. If $x \in D_{\gamma}^{+}$ then $S_{D}(x) = \{1\}$ and applying (2.2) once more, we get

$$
\partial_{\gamma} f(x) = \left\{ \xi \in \mathbb{R} : \xi \le \frac{f(x + \gamma) - f(x)}{\gamma} \right\} = \left] -\infty, \frac{f(x + \gamma) - f(x)}{\gamma} \right\}
$$
\n(b) If $x \in D_{\gamma}^{-} \cap D_{\gamma}^{+}$ then $S_{D}(x) = \{-1, 1\}$. Hence $\xi \in \partial_{\gamma} f(x)$ iff

\n
$$
\xi \le \frac{f(x + \gamma) - f(x)}{\gamma} \quad \text{and} \quad -\xi \le \frac{f(x - \gamma) - f(x)}{\gamma}.
$$

Thus the assertion (b) holds. Similar arguments apply to the case (c).

 \Box

.

$$
\Box
$$

It follows from Corollary 2.3 that for any γ -function $f: D \subset \mathbb{R} \to \mathbb{R}$, $\partial_{\gamma} f(x)$ is always nonempty and has a simple structure at every $x \in D$. There arises a question: Is it true that for every γ -convex function $f: D \subset X \to \mathbb{R}$, $\partial_{\gamma} f(x)$ is nonempty at least for every x satisfying $\mathcal{U}_{\gamma}(x) \subset D$? The answer is negative as Proposition 2.6 below shows.

We recall that a function f on a normed space X is said to be additive if $f(x + y) = f(x) + f(y)$ for all $x, y \in X$. It is easy to verify that an additive function is γ -convex for arbitrary positive number γ . If $X \neq \{0\}$ then there exists an additive function f on X such that f is not linear. Indeed, there is an additive function $H : \mathbb{R} \to \mathbb{R}$ that is not linear, see [2, p. 6]. Since $X \neq \{0\}$, by the Hahn-Banach theorem, there is a continuous linear functional $\varphi: X \to \mathbb{R}$ such that $\varphi \neq 0$, i.e., $\varphi(X) = \mathbb{R}$. Let $f = H \circ \varphi$ then f is additive. If f is linear then, for any $\alpha, \beta \in \mathbb{R}$, there is an $x \in X$ such that $\varphi(x) = \beta$ and we have

$$
H(\alpha\beta) = H(\alpha\varphi(x)) = H(\varphi(\alpha x)) = f(\alpha x) = \alpha f(x) = \alpha H(\varphi(x)) = \alpha H(\beta),
$$

i.e., H is linear, a contradiction. Thus f is not linear.

Proposition 2.6. Suppose that X is a pre-Hilbert space and $\dim X \geq 2$. Then there exists a γ -convex function $f: X \to \mathbb{R}$ such that $\partial_{\gamma} f(x) = \emptyset$ for all $x \in X$.

Proof. Let f be an arbitrary additive function on X such that f is not linear. Then for all $x \in X$ and all rational number r, $f(rx) = rf(x)$. Suppose, contrary to our claim, that $\partial_{\gamma} f(x_0) \neq \emptyset$ for some $x_0 \in X$. Choose any $\xi \in \partial_{\gamma} f(x_0)$. For each $s \in S$ there exists $\lambda \in [0, \gamma]$ such that

$$
\gamma \langle \xi, s \rangle \le f(x + \lambda s) - f(x - (\gamma - \lambda)s) = f(\gamma s).
$$

Replacing s by $-s$ we get

$$
-\gamma\langle \xi, s \rangle \le f(\gamma(-s)) = -f(\gamma s)
$$

i.e., $\gamma \langle \xi, s \rangle \geq f(\gamma s)$. Hence

(2.3)
$$
\gamma \langle \xi, s \rangle = f(\gamma s) \text{ for all } s \in S.
$$

Suppose now that $s \in S$ and $r \in \mathbb{R}$, $0 \leq |r| < 1$. Choose $t \in \mathbb{R}$ such that $r^2 + t^2 = 1$. Since dim $X \ge 2$, there exists $s' \in S$ satisfying $(s|s') = 0$ (where $(\cdot | \cdot)$) denotes the inner product of X). Let $y = rs + ts'$ and $z = rs - ts'$ then $y, z \in S$ and $2rs = y + z$. Applying (2.3) we have

$$
2f(r\gamma s) = f(2r\gamma s) = f(\gamma y + \gamma z) = f(\gamma y) + f(\gamma z) = \gamma \langle \xi, y \rangle + \gamma \langle \xi, z \rangle
$$

and

$$
\gamma\langle \xi, y \rangle + \gamma\langle \xi, z \rangle = \gamma\langle \xi, y + z \rangle = \gamma\langle \xi, 2rs \rangle = 2r\gamma\langle \xi, s \rangle = 2rf(\gamma s).
$$

Thus,

(2.4)
$$
f(r\gamma s) = rf(\gamma s) \text{ for all } s \in S \text{ and } 0 \leq |r| < 1.
$$

Now for each $x \in X$, $x \neq 0$ and $\alpha \in \mathbb{R}$, we choose a natural number n satisfying $\alpha ||x||/n\gamma < 1$ and $||x||/n\gamma < 1$. Then (2.4) yields

$$
\frac{1}{n}f(\alpha x) = f\left(\frac{\alpha}{n}x\right) = f\left(\frac{\alpha||x||}{n\gamma}\gamma \frac{x}{||x||}\right) = \frac{\alpha||x||}{n\gamma}f\left(\gamma \frac{x}{||x||}\right)
$$

and

$$
\frac{\alpha||x||}{n\gamma}f(\gamma\frac{x}{||x||}) = \alpha f\left(\frac{||x||}{n\gamma}\gamma\frac{x}{||x||}\right) = \alpha f\left(\frac{1}{n}x\right) = \frac{\alpha}{n}f(x).
$$

Consequently, $f(\alpha x) = \alpha f(x)$ for all $x \in X$ and $\alpha \in \mathbb{R}$, i.e., f is linear. This contradiction completes the proof. \Box

Remark. Proposition (2.6) still holds if it is only assumed that X is a normed space with dim $X \geq 2$. However, the proof is more complicated.

We conclude this section with a property of monotonicity of γ -subdifferentials of γ -convex functions. We know that subdifferentials of convex functions are monotone. γ -subdifferentials of γ -convex functions have a similar property.

Proposition 2.7. Suppose that $f : D \to \mathbb{R}$ is γ -convex. Then

$$
(2.5) \quad x, y \in D, \ \xi \in \partial_{\gamma} f(x), \ \eta \in \partial_{\gamma} f(y), \ \|x - y\| \ge \gamma \Longrightarrow \langle \xi - \eta, x - y \rangle \ge 0.
$$

Proof. Let $s = \frac{x - y}{y}$ $\frac{x-y}{\|x-y\|}$. For $\xi \in \partial_\gamma f(x)$, $\eta \in \partial_\gamma f(y)$, there exist $\lambda, \mu \in [0, \gamma]$ such that

$$
\gamma\langle \xi, -s \rangle \le f(x + \lambda(-s)) - f(x - (\gamma - \lambda)(-s))
$$

and

$$
\gamma \langle \eta, s \rangle \le f(y + \mu s) - f(y - (\gamma - \mu)s).
$$

Hence

$$
\gamma \langle \xi, s \rangle \ge f(x + (\gamma - \lambda)s) - f(x - \lambda s)
$$

and

$$
-\gamma \langle \eta, s \rangle \ge f(y - (\gamma - \mu)s) - f(y + \mu s).
$$

Therefore

$$
\gamma \langle \xi - \eta, s \rangle \ge f(x + (\gamma - \lambda)s) + f(y - (\gamma - \mu)s) - [f(x - \lambda s) + f(y + \mu s)] \ge 0.
$$

The last inequality holds because

$$
||x + (\gamma - \lambda)s - (y - (\gamma - \mu)s)|| = ||x - y|| + 2\gamma - (\lambda + \mu) \ge ||x - y|| \ge \gamma.
$$

Remark. If $D \subset \mathbb{R}$ then (2.5) is sufficient for the γ -convexity. In fact, by [7, Theorem 2.3, a function $f: D \subset \mathbb{R} \to \mathbb{R}$ is γ -convex iff

$$
\xi \leq \eta
$$
 for all $\xi \in \partial_{\gamma} f(x), \ \eta \in \partial_{\gamma} f(x + \gamma)$ and $\{x, x + \gamma\} \subset D$.

3. γ -SUBDIFFERENTIALS OF SYMMETRICALLY γ -CONVEX FUNCTIONS

In this section, we consider γ -subdifferentials of symmetrically γ -convex functions. It is possible that the intersection of $\partial_{\gamma} f(x)$ of a γ-convex function f and its Clarke generalized gradient $\partial f(x)$ at x is empty. For instance, $f(x) = \cos x$ is γ-convex for $\gamma = 2\pi$ (see [6, Example 2.3]) and $\partial_{\gamma} f(x) = \{0\}$ while $\partial f(x) =$ ${-\sin x}$ for all $x \in \mathbb{R}$. However, the situation is slightly different for symmetrically γ -convex functions.

Proposition 3.1. Suppose that $f: D \to \mathbb{R}$ is symmetrically γ -convex and $x_0 \in$ int D. If f is Gâteaux differentiable at x_0 then $Df(x_0) \in \partial_{\gamma} f(x_0)$.

Proof. Suppose $s \in S_D(x_0)$ and $t > 0$ such that $x_0 - ts \in D$. Symmetrical γ -convexity of f implies

$$
f(x_0) \leq \frac{\gamma}{\gamma + t} f(x_0 - ts) + \frac{t}{\gamma + t} f(x_0 + \gamma s).
$$

Hence,

$$
\frac{f(x_0 - ts) - f(x_0)}{t} \ge \frac{f(x_0) - f(x_0 + \gamma s)}{\gamma}.
$$

Letting $t \downarrow 0$ we get

$$
\langle Df(x_0), -s \rangle \ge \frac{f(x_0) - f(x_0 + \gamma s)}{\gamma},
$$

i.e.,

$$
\langle Df(x_0), s \rangle \le \frac{f(x_0 + \gamma s) - f(x_0)}{\gamma}, \quad s \in S_D(x_0).
$$

That $Df(x_0) \in \partial_{\gamma} f(x_0)$ follows from Proposition 2.5.

Corollary 3.1. If $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is symmetrically γ -convex then the set of all $x \in \text{int}_{\gamma} D$ such that $\partial_{\gamma} f(x) = \emptyset$ is a set of Lebesgue measure 0.

Proof. This follows from the preceding proposition and the fact that f is differentiable almost everywhere in $\text{int}_{\gamma} D$, see [3, Corollary 3.7]. \Box

Combining Propositions 2.4 and 3.1 we obtain

Corollary 3.2. Suppose that $f : D \to \mathbb{R}$ is symmetrically γ -convex. If $f'(x_0) = 0$ and if $f(x_*) \leq f(x)$ for some $x_* \in \mathcal{U}_{\gamma}(x_0) \cap D$ and for all $x \in \mathcal{U}_{\gamma}(x_0) \cap D$, then x_* is a global minimizer of f.

We now state a relation between the γ -subdifferential and the Clarke generalized gradient of a symmetrically γ -convex function.

Proposition 3.2. Suppose that $f: D \to \mathbb{R}$ is symmetrically γ -convex and $x_0 \in$ int_γ D. If f is locally Lipschitzian at x_0 and continuous at each point of $S_\gamma(x_0)$ then $\partial f(x_0) \subset \partial_{\gamma} f(x_0)$, where $\partial f(x_0)$ is the Clarke generalized gradient of f at x_0 . In particular, $\partial_{\gamma} f(x_0)$ is nonempty.

 \Box

Proof. Suppose $s \in S$. The generalized directional derivative of f at x_0 in the direction s, denoted as $f^{\circ}(x_0; s)$, is defined by

(3.1)
$$
f^{\circ}(x_0; s) = \lim_{\varepsilon \downarrow 0} \sup_{\|x - x_0\| < \varepsilon} \sup_{0 < t < \varepsilon} \frac{f(x + ts) - f(x)}{t}
$$

(see [1, p. 36]). Since f is locally Lipschitzian at x_0 , there exist a positive number K and a ball $\mathcal{U}_r(x_0)$ such that

$$
|f(x) - f(x')| \le K ||x - x'||
$$
 for all $x, x' \in U_r(x_0)$.

Let ε satisfy $0 < \varepsilon < r$ and $\mathcal{U}_{\gamma+2\varepsilon}(x_0) \subset D$. For

$$
x \in X, \|x - x_0\| < \varepsilon, \ s \in S \quad \text{and} \quad 0 < t < \varepsilon,
$$

we have $x + (t + \gamma)s \in \mathcal{U}_{\gamma+2\varepsilon}(x_0)$. Hence

$$
f(x+ts) \le \frac{\gamma}{\gamma+t}f(x) + \frac{t}{\gamma+t}f(x+(t+\gamma)s).
$$

Consequently,

(3.2)
$$
\frac{f(x+ts)-f(x)}{t} \le \frac{f(x+(t+\gamma)s)-f(x)}{\gamma+t}.
$$

On the other hand, since $\varepsilon < r$,

$$
| [f(x + (t + \gamma)s) - f(x)] - [f(x_0 + (t + \gamma)s) - f(x_0)] |
$$

\n
$$
\leq | f(x + (t + \gamma)s) - f(x_0 + (t + \gamma)s) | + |f(x) - f(x_0)|
$$

\n
$$
\leq | f(x + (t + \gamma)s) - f(x_0 + (t + \gamma)s) | + K ||x - x_0||
$$

\n
$$
\leq | f(x + (t + \gamma)s) - f(x_0 + (t + \gamma)s) | + K\epsilon.
$$

Thus, (3.2) yields

$$
\sup_{0
$$

$$
\sup_{0
$$

Since f is continuous at $x_0 + \gamma s$, (3.1) and (3.3) imply

$$
f^{\circ}(x_0; s) \leq \frac{f(x_0 + \gamma s) - f(x_0)}{\gamma}.
$$

If $\xi \in \partial f(x_0) := \{ \varphi \in X^* : \langle \varphi, v \rangle \leq f^{\circ}(x_0; v) \text{ for all } v \in X \}$ (see [1, p. 27]) and if $s \in S$ then $\langle \xi, s \rangle \leq f^{\circ}(x_0; s)$. Hence

$$
\langle \xi, s \rangle \le \frac{f(x_0 + \gamma s) - f(x_0)}{\gamma}
$$
 for all $s \in S$.

Thus by (2.2) , $\xi \in \partial_{\gamma} f(x_0)$, i.e., $\partial f(x_0) \subset \partial_{\gamma} f(x_0)$. Finally, $\partial f(x_0)$ is nonempty (see [1, p. 27]) and so is $\partial_{\gamma} f(x_0)$. \Box

Corollary 3.3. If $f : D \to \mathbb{R}$ is symmetrically γ -convex and locally Lipschitzian at an $x_0 \in \text{int}_{2\gamma} D$ then $\emptyset \neq \partial f(x_0) \subset \partial_{\gamma} f(x_0)$.

Proof. Since $S_\gamma(x_0) \subset \text{int}_\gamma D$, the proof follows from Proposition 3.3 and [3, \Box Corollary 3.6].

An immediate result of the preceding corollary and [4, Corollary 2.1] is the following.

Corollary 3.4. If $f : D \to \mathbb{R}$ is symmetrically γ -convex and bounded from above on a ball $U_r(x_0) \subset D$ for some $r > 2\gamma$ then $\emptyset \neq \partial f(x_0) \subset \partial_\gamma f(x_0)$.

Corollary 3.5. If dim $X < \infty$ and $f : D \subset X \to \mathbb{R}$ is symmetrically γ -convex then $\partial_{\gamma}f(x_0)$ is nonempty, convex and compact whenever $x_0 \in \text{int}_{2\gamma} D$.

Proof. Applying Corollary 3.3 and [3, Theorem 3.1] again, we get $\emptyset \neq \partial f(x_0)$ $\partial_{\gamma}f(x_0)$. The convexity and the compactness of $\partial_{\gamma}f(x_0)$ follow from [3, Theorem 3.1] and Proposition 2.2. \Box

4. Concluding remarks

In this paper we have presented some sufficient conditions for nonemptiness of the γ -subdifferential of a symmetrically γ -convex function. Some open questions are the following:

Is there a γ -convex function f defined on all of the space X that is continuous and $\partial_{\gamma} f(x) = \emptyset$ at some point $x \in X$?

Under which condition, a set-valued map $T: X \to 2^{X^*}$ will be the γ -subdifferential of a γ -convex function?

These and other questions will be subjects of further investigation.

Acknowledgement

The author would like to express his gratitude to Professor Hoang Xuan Phu for suggesting the problem and for helpful discussions, and the referee for many suggestions.

REFERENCES

- [1] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
- [2] B. R. Gelbaum and J. M. H. Olmsted, Theorems and Counterexamples in Mathematics, Springer-Verlag, New York, 1990.
- [3] N. N. Hai and H. X. Phu, Symmetrically γ -convex functions, Optimization 46 (1999), 1-23.
- [4] N. N. Hai and H. X. Phu, Some properties of γ-convex functions on a normed space, preprint 99/48, Hanoi Institute of Mathematics.
- [5] H. X. Phu, γ -Subdifferential and γ -convexity of functions on the real line, Applied Mathematics and Optimization 27 (1993), 145-160.
- [6] H. X. Phu, γ-Subdifferential and γ-convexity of functions on a normed space, J. Optim. Theory and Appl. 85 (1995), 649-676.
- [7] H. X. Phu and N. N. Hai, Some analytical properties of γ -convex functions on the real line, J. Optim. Theory and Appl. 91 (1996), 671-694.

Department of Mathematics, College of Education, University of Hue HUE, VIETNAM