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SOME CONDITIONS FOR NONEMPTINESS OF
v-SUBDIFFERENTIALS OF y-CONVEX FUNCTIONS

NGUYEN NGOC HAI

ABSTRACT. ~v-subdifferential is a concept which can be used for global op-
timization. If x. is a global minimizer of an arbitrary function f then 0 €
Oy f(z+), where 0, f(z+) is the ~y-subdifferential of f at z.. In particular,
Oyf(z+) # 0 at a global minimizer x.. In this paper we investigate the
nonemptiness and the monotonicity of ~-subdifferentials of 7-convex func-
tions. Some sufficient conditions are stated for the nonemptiness of the ~y-
subdifferential of a symmetrically y-convex function at a point. It is proved
that for a symmetrically ~-convex function, the Gateaux derivative (when it
exists) at a point belongs to the «-subdifferential at that point. A relation
between the y-subdifferential and the Clarke generalized gradient of a sym-
metrically y-convex function is also presented.

1. INTRODUCTION

Global optimization is a very active field of mathematical programming. To
find an extremum of a given function f, a popular method is to seek all the local
extrema and then compare them. If f is differentiable then a necessary condi-
tion for local extremality is f’(z.) = 0. Since, however, many functions are not
differentiable, new tools generalizing the concept of differential have been intro-
duced. For convex functions, subdifferentials are often used where derivatives
do not exist. If f is convex, a necessary and sufficient condition for z, to be
a local (and also a global) minimizer is 0 € 9f(z.), where df(x4) denotes the
subdifferential of f at z,. For locally Lipschitzian functions, in order to to seek
a local extremum, one may solve the inclusion 0 € df(x) where 0f(z) is now the
Clarke generalized gradient of f at x.

In [5-6], H. X. Phu introduced the notion of y-subdifferential . f of an arbi-
trary function f and proved that 0 € 0, f(z,) is a necessary condition for a global
minimizer. For a vy-convex function, this condition implies that if it has a global
minimum, there is a global minimizer near x,. Some basic properties of d f(x)
of an arbitrary function f were investigated in [5-6] (in [5], v is not a constant,
it is a continuous and positive function such that x + v(z) is strictly increasing).
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In this paper we first consider the monotonicity of v-subdifferentials of y-convex
functions and prove that in multidimensional pre-Hilbert spaces, y-subdifferential
of each additive function that is not linear is empty at every point (see Section
2). Then, in Section 3, we restrict ourselves to symmetrically v-convex functions
and state some conditions under which the ~-subdifferential of a symmetrically
~v-convex function is nonempty. We establish a relation between Gateaux deriva-
tives and ~-subdifferentials of symmetrically v-convex functions. It is also shown
that under some assumptions, the Clarke generalized gradient of a symmetrically
~v-convex function at a point is a subset of its y-subdifferential at that point.
From this result it follows that for a symmetrically y-convex function on a finite
dimensional space, its y-subdifferential at certain points is always nonempty.

2. DEFINITIONS AND SOME PROPERTIES

Let X be a real normed space and v be a fixed positive number. Consider a
function f whose effective domain is D, i.e. such that D = {z| f(z) < +oo} (in
this paper we assume that f(z) > —oo for all z € X). For the convenience of the
reader we recall from [6] the definition of the y-subdifferential of the function f
and its properties.

First let us introduce some notations. For an r > 0, set

Sr(@) ={ye X:|y—z|=r} S5=251(0),

Ur(z) ={y € X :[ly — x| <7},

int,D={x e D:3" =r'(z) >r, U+(z) C D}.
Definition 2.1. The y-subdifferential of f at z € D, denoted by 0, f(z), is the
subset of the dual space X* given by

{£ € X*: for s € S, there exists A € [0,7] such that
& s) < fla+As) = flz = (v = A)s)}-
In other words,
Oy f(x) ={¢ € X*: for s € S, there exist 2’ and 2" such that
o' —a" =qs, x€2l,a"], (§,2"—a") < f(&) - f(2")}

Here, [2/, 2] denotes the closed line segment with endpoints ' and z”.

Proposition 2.1. [6, Theorem 2.1] Let

no_ I
Agq(z,s) = {M cx €2, -2 = ’ys}, reD, sesS.
v

Then
Oyf(x) ={§£€ X" : (& s) € conv Ag,(x,5), s €S}
If f is continuous on Uy(x) then

Oyf(x) ={6 € X" : (£ s) € Aj,(x,5), s€ S}
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Corollary 2.1. [6, Proposition 2.1] Let X =R and

Then O, f(x) = convM ¢ (x). If f is continuous on [x — v,z +~] C D C R then
0, (x) = My (o).

Corollary 2.2. [6, Corollary 2.1] Let x € D and Sp(z) :={s€ S:x+~s € D}.
Then,

(2.1) Oyf(x) ={§ € X" : (§s) € convAf,(z,s), s € Sp(x)}.

sz elr,r +9] CR, a:'ED}, r e D.

Corollary 2.1 shows that the y-subdifferential of a function on the real line is
convex at each point. This is also true for functions on a normed space.
Proposition 2.2. [6, Propositions 2.2-2.3] Suppose f: D C X — R. Then

(a) Oy f(x) is convex for all x € D and

(b) 0, f(x) is compact if dim X < oo and f is continuous on U, (x).

~v-subdifferential can be used for global optimization. More precisely, we have

Proposition 2.3. Let f: D — R.
(i) If f(z*) < f(x) for x € Uy (z*) N D then 0 € Oy f(z*).
(i) If f(z*) > f(z) for x € Uy(z*) N D then 0 € O, f(z*).

This proposition gives a necessary condition for global optimization, see [6,
Theorems 4.1-4.2]. For any -convex function f, if it has a global minimum then
the inclusion 0 € 0, f(z*) will be a sufficient condition for a global minimizer
near x* as the next proposition shows.

From now on, we assume that D is a nonempty convex subset of X.

Definition 2.2. A function f: D — R is said to be

(i) y-convex if zo, 1 € D, |lz1 — ol = v imply f(x5) + f(21) < f(2o) + f(21);
(ii) symmetrically y-convex if xg,z1 € D, |x1 — x¢|| > v imply

v
Fap) < (1= ) flwo) + T (@),
|21 — 0| lz1 — ol
Y v

flz)) < ———— f(=o +<1—7)f1‘1 ;
) < o ) EETLAR

where x(, := xg _1_77331 — 0 , o= — St B

lz1 — ol lz1 — o]

Obviously, a symmetrically y-convex function is also v-convex.

The following may be useful for optimization of vy-convex functions.
Proposition 2.4. [6, Theorems 4.3-4.4] Suppose that f : D C X — R is ~y-
conver and =¥ € D.

(i) If f(zs) < f(x) for all x € Uy () N D then x, is a global minimizer.
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(ii) If 0 € O, f(x*) then for each xy € D\U(x*) there exists an x), € Uy (z*)ND
with f(zy) < f(o).

(iii) If 0 € 0y f(z*) and if f(x«) < f(x) for all x € Uy(z*) N D then x, is a
global minimizer.

We now present another formula which describes vy-subdifferentials of y-convex
functions.
Proposition 2.5. Suppose that f: D C X — R is y-convex and x € D. Then

. fl@+ys) — flz
@D o) = {eex: (g < LN e 0).
Proof. Let A be the right hand side of (2.2). If £ € A then
v, s) < f(x+s)— f(x) forall seS

because f(z + vs) — f(x) = oo whenever s ¢ Sp(z). Choosing 2’ = x + s and
z” = x, we have v({,s) < f(a') — f(2"). Hence £ € 0,f(z), so that A C 9, f(x).
Conversely, suppose § € 0 f(x). For s € Sp(x), there are 2/, 2" € X satisfying

o — 2" =, w [da”] and {6 s) < f&) — (&),
Since f is y-convex and z,z’ € [z, x + s,

f@') = f@") < flz+7s) — f(@).

Hence
v, s) < f(x+vs)— f(x) forall se Sp(x).
Thus ¢ € A and 0, f(z) C A. Consequently, A = 0, f(x). O
Corollary 2.3. Suppose f: D C R — R is y-convex. Let
Di ={zeD: z+~eD},
D, ={reD: z—vy€D}
(a) 0yf(z) =R ifx € D\ (D UDY), and 9, f(x) =] — o0, (f(z+7) — f(x))/7]
ifv € DI\ D.
(b) Oy f(z) = [(f(z) — flx =7)/7 (f(z +7) — f(z))/7] if 2 € DI N D7
(c) Oy f(x) = [(f(x) = flw—))/v,+ool if w € DT\ DJ.
Proof. (a) Suppose x € D\ D;. If x ¢ DI then Sp(x) = @ and (2.2) yields
dyf(x) =R. If € DY then Sp(x) = {1} and applying (2.2) once more, we get

_ oo St fl)y flz+7) = f=z)
o) = {eemie < EXV=IE ) St =s(a)
(b) If z € D3 N DY then Sp(z) = {—1,1}. Hence § € 9, f(x) iff

fa+9) - fl=) _ggf(x—v)—f(w).
Y v
Thus the assertion (b) holds. Similar arguments apply to the case (c). O

£ <
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It follows from Corollary 2.3 that for any y-function f: D C R — R, 0, f(z)
is always nonempty and has a simple structure at every x € D. There arises a
question: Is it true that for every v-convex function f: D C X — R, 9,f(x) is
nonempty at least for every x satisfying U, (x) C D? The answer is negative as
Proposition 2.6 below shows.

We recall that a function f on a normed space X is said to be additive if
flx+y) = f(z)+ f(y) for all z,y € X. Tt is easy to verify that an additive
function is ~-convex for arbitrary positive number . If X # {0} then there
exists an additive function f on X such that f is not linear. Indeed, there is an
additive function H : R — R that is not linear, see [2, p.6]. Since X # {0}, by
the Hahn-Banach theorem, there is a continuous linear functional ¢ : X — R
such that ¢ # 0, i.e., o(X) =R. Let f = H o ¢ then f is additive. If f is linear
then, for any «, 3 € R, there is an x € X such that p(z) = 5 and we have

H(af) = H(ap(x)) = H(p(ax)) = f(ax) = af(z) = aH(p(z)) = aH(B),
i.e., H is linear, a contradiction. Thus f is not linear.

Proposition 2.6. Suppose that X is a pre-Hilbert space and dim X > 2. Then
there exists a y-convex function f: X — R such that 0, f(x) =0 for all x € X.

Proof. Let f be an arbitrary additive function on X such that f is not linear.
Then for all x € X and all rational number r, f(rx) = rf(z). Suppose, contrary
to our claim, that 0, f(xo) # 0 for some o € X. Choose any £ € 0, f(zo). For
each s € S there exists A € [0,7] such that

V(€ s) < fla+As) = fla—(v=A)s) = f(rs).
Replacing s by —s we get
—(&8) < f(y(=s)) = —f(vs)
ie., (€, 8) > f(vs). Hence
(2.3) V€, s) = f(ys) forall seS.

Suppose now that s € S and r € R, 0 < |r|] < 1. Choose ¢t € R such that
7?2 +1? = 1. Since dim X > 2, there exists s’ € S satisfying (s|s’) = 0 (where (-|-)
denotes the inner product of X). Let y = rs +ts’ and z = rs —ts’ then y,z € S
and 2rs = y + z. Applying (2.3) we have

2f(rys) = f(2rys) = flyy +v2) = flyy) + f(vz) = (& w) + (6 2)
and
Y& y) + (8 2) =&y + 2) = (& 2rs) = 2ry(€, 5) = 21 f (7).
Thus,
(2.4) f(rys) =rf(ys) forall s€S and 0<|r|<1.
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Now for each x € X, x # 0 and a € R, we choose a natural number n satisfying
allz||/ny <1 and ||z||/ny < 1. Then (2.4) yields

i o ool =\ ez, =
W) =160 = £ (S ) =S Opep)
and
Mol y () = ar (B ) = ap (R = © o,
ny [zl ny |z n n
Consequently, f(ax) = af(x) for all z € X and o € R, i.e., f is linear. This
contradiction completes the proof. O

Remark. Proposition (2.6) still holds if it is only assumed that X is a normed
space with dim X > 2. However, the proof is more complicated.

We conclude this section with a property of monotonicity of y-subdifferentials
of y-convex functions. We know that subdifferentials of convex functions are
monotone. y-subdifferentials of y-convex functions have a similar property.

Proposition 2.7. Suppose that f: D — R is yv-convex. Then
(25) zyeD, €0y f(x), n€d f(y), lx—yllZ2y=({—nz—y) =0

Proof. Let s = ﬁ For ¢ € 0, f(x), n € 0, f(y), there exist A, u € [0,7] such
that
Y& —=s) < fl@+ A(=s)) — flz = (v = A)(-9))

and

Y{n,8) < fly+us)— fly— (v —ws).
Hence

(s 8) = f(x+ (v = A)s) — f(@ — As)
and

=y, s) = fly— (v —pn)s) — f(y + pus).
Therefore

WE=ms) = flw+ (v =N)s)+ fly — (v = w)s) = [f (@ = As) + fy + ps)] > 0.
The last inequality holds because
[z +(v=As == (v=mws)l =llz—yl+2y - A+ p) =z -yl =
O

Remark. If D C R then (2.5) is sufficient for the y-convexity. In fact, by [7,
Theorem 2.3|, a function f: D C R — R is y-convex iff

§ <nforall £ € 0yf(x), ne€dyf(x+7)and {z,z+~} C D.
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3. ¥-SUBDIFFERENTIALS OF SYMMETRICALLY y-CONVEX FUNCTIONS

In this section, we consider y-subdifferentials of symmetrically y-convex func-
tions. It is possible that the intersection of 9, f(x) of a y-convex function f and
its Clarke generalized gradient 0f(x) at x is empty. For instance, f(z) = cosx
is y-convex for v = 27 (see [6, Example 2.3]) and 0, f(x) = {0} while 0f(z) =
{—sinz} for all z € R. However, the situation is slightly different for symmetri-
cally y-convex functions.

Proposition 3.1. Suppose that f : D — R is symmetrically ~v-conver and xqg €
int D. If f is Gateauz differentiable at xo then D f(xg) € Oy f(x0).

Proof. Suppose s € Sp(zp) and ¢t > 0 such that zyp — ts € D. Symmetrical
~-convexity of f implies

flzg) < Lf( o—ts)-i—#f(xo—i—*ys).

v+t
Hence,
flxo —ts) = f(zo) _ fxo) = f(zo+75)
3 N vy

Letting t | 0 we get

(Df(zo), ) > f(@o) — flzo +78)’

~
ie.,

(Df(o),s) < f(@o £ 7‘;) — f(xO), s € Sp(wp).
That D f(x) € 0, f(xo) follows from Proposition 2.5. O

Corollary 3.1. If f: D C R® — R s symmetrically v-convex then the set of all
x € inty D such that O, f(x) =0 is a set of Lebesque measure .

Proof. This follows from the preceding proposition and the fact that f is differ-
entiable almost everywhere in int., D, see [3, Corollary 3.7]. O

Combining Propositions 2.4 and 3.1 we obtain

Corollary 3.2. Suppose that f : D — R is symmetrically v-convez. If f'(zo) =0
and if f(x.) < f(x) for some x, € Uy(x9) N D and for all x € Uy(xo) N D, then
T4 18 a global minimizer of f.

We now state a relation between the y-subdifferential and the Clarke general-
ized gradient of a symmetrically «-convex function.

Proposition 3.2. Suppose that f : D — R is symmetrically ~v-conver and xqg €
int, D. If f is locally Lipschitzian at xo and continuous at each point of S, (x¢)
then Of (xg) C 0y f(xo), where Of(xo) is the Clarke generalized gradient of f at
xg. In particular, 0., f(xo) is nonempty.
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Proof. Suppose s € S. The generalized directional derivative of f at zg in the
direction s, denoted as f°(xo;s), is defined by

t —
(3.1) f°(xp;8) =lim sup  sup fletts) = f@)
el 0jz—zq|<e 0<t<e t

(see [1, p.36]). Since f is locally Lipschitzian at ¢, there exist a positive number
K and a ball U, (zo) such that

|f(x) — f(2")| < K|z —2'|| forall =x,2" €U.(x).
Let € satisfy 0 < e <7 and U,y42.(x9) C D. For
reX, [[r—x) <e, s€S and 0<t<e,
we have x + (t + v)s € Uyyo2-(x0). Hence

¥ t
Flo+ 1) € o f@) + o fla ot (04)s)

Consequently,

fla+19) = () _ ot (+)s) = f(2)
t - v+t ’
On the other hand, since € < r,
|[f (@ + (t+7)s) = f(2)] = [fzo + (t+)s )—f(l‘o)H
<|f(x+ (t+7)s) = flzo+ (E+7)s)| + |f(2) = flo)]
<|f@+t+7)s) = flzo+ (t+7)s)] + Kllx—on
<|f(z+ (t+7)s) = flzo + (t+7)s)| + Ke.
Thus, (3.2) yields

(3.2)

fotts) — f(2) _

(3.3) sup <
0<t<e t
fl@o+ (t+7)s) = f(@o) + [f(@+ (t+7)s) — fl@o+ (E+7)s)| | Ke
sup + .
0<t<e t+y t+~

Since f is continuous at zg + s, (3.1) and (3.3) imply

fo(xO; 8) < f(J:O + ’Y‘i) — f(x(]) .
If £ € Of (xg) :={p € X*: (p,v) < f(xp;v) for all v € X} (see [1, p.27]) and if
s € S then (€,s) < f°(zo;s). Hence

f(zo+vs) — f(xo)

(€ s) < 5 for all s € S.
Thus by (2.2), £ € 9, f(x), i.e., Of(x0) C 0y f(xo). Finally, 0f (o) is nonempty
(see [1, p.27]) and so is 0, f(xo). O

Corollary 3.3. If f : D — R is symmetrically ~v-convex and locally Lipschitzian
at an xo € intyy D then ) # O f (xo) C 0y f (o).
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Proof. Since S,(x¢) C int, D, the proof follows from Proposition 3.3 and [3,
Corollary 3.6]. O

An immediate result of the preceding corollary and [4, Corollary 2.1] is the
following.

Corollary 3.4. If f : D — R is symmetrically v-convex and bounded from above
on a ball U.(xo) C D for some r > 27 then ) # 0 f(xo) C 0, f(xo)-

Corollary 3.5. Ifdm X < oo and f: D C X — R is symmetrically ~v-convex
then Oy f (o) is nonempty, convex and compact whenever xy € intoy D.

Proof. Applying Corollary 3.3 and [3, Theorem 3.1] again, we get () # 0f(x¢) C
0y f(x0). The convexity and the compactness of 0 f (o) follow from [3, Theorem
3.1] and Proposition 2.2. O

4. CONCLUDING REMARKS

In this paper we have presented some sufficient conditions for nonemptiness of
the v-subdifferential of a symmetrically v-convex function. Some open questions
are the following:

Is there a y-convex function f defined on all of the space X that is continuous
and 0, f(z) = 0 at some point z € X?

Under which condition, a set-valued map T : X — 2%X" will be the y-subdiffe-
rential of a y-convex function?

These and other questions will be subjects of further investigation.
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