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SOME CONDITIONS FOR NONEMPTINESS OF

γ-SUBDIFFERENTIALS OF γ-CONVEX FUNCTIONS

NGUYEN NGOC HAI

Abstract. γ-subdifferential is a concept which can be used for global op-
timization. If x∗ is a global minimizer of an arbitrary function f then 0 ∈
∂γf(x∗), where ∂γf(x∗) is the γ-subdifferential of f at x∗. In particular,
∂γf(x∗) 6= ∅ at a global minimizer x∗. In this paper we investigate the
nonemptiness and the monotonicity of γ-subdifferentials of γ-convex func-
tions. Some sufficient conditions are stated for the nonemptiness of the γ-
subdifferential of a symmetrically γ-convex function at a point. It is proved
that for a symmetrically γ-convex function, the Gâteaux derivative (when it
exists) at a point belongs to the γ-subdifferential at that point. A relation
between the γ-subdifferential and the Clarke generalized gradient of a sym-
metrically γ-convex function is also presented.

1. Introduction

Global optimization is a very active field of mathematical programming. To
find an extremum of a given function f , a popular method is to seek all the local
extrema and then compare them. If f is differentiable then a necessary condi-
tion for local extremality is f ′(x∗) = 0. Since, however, many functions are not
differentiable, new tools generalizing the concept of differential have been intro-
duced. For convex functions, subdifferentials are often used where derivatives
do not exist. If f is convex, a necessary and sufficient condition for x∗ to be
a local (and also a global) minimizer is 0 ∈ ∂f(x∗), where ∂f(x∗) denotes the
subdifferential of f at x∗. For locally Lipschitzian functions, in order to to seek
a local extremum, one may solve the inclusion 0 ∈ ∂f(x) where ∂f(x) is now the
Clarke generalized gradient of f at x.

In [5–6], H. X. Phu introduced the notion of γ-subdifferential ∂γf of an arbi-
trary function f and proved that 0 ∈ ∂γf(x∗) is a necessary condition for a global
minimizer. For a γ-convex function, this condition implies that if it has a global
minimum, there is a global minimizer near x∗. Some basic properties of ∂γf(x)
of an arbitrary function f were investigated in [5–6] (in [5], γ is not a constant,
it is a continuous and positive function such that x + γ(x) is strictly increasing).
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In this paper we first consider the monotonicity of γ-subdifferentials of γ-convex
functions and prove that in multidimensional pre-Hilbert spaces, γ-subdifferential
of each additive function that is not linear is empty at every point (see Section
2). Then, in Section 3, we restrict ourselves to symmetrically γ-convex functions
and state some conditions under which the γ-subdifferential of a symmetrically
γ-convex function is nonempty. We establish a relation between Gâteaux deriva-
tives and γ-subdifferentials of symmetrically γ-convex functions. It is also shown
that under some assumptions, the Clarke generalized gradient of a symmetrically
γ-convex function at a point is a subset of its γ-subdifferential at that point.
From this result it follows that for a symmetrically γ-convex function on a finite
dimensional space, its γ-subdifferential at certain points is always nonempty.

2. Definitions and some properties

Let X be a real normed space and γ be a fixed positive number. Consider a
function f whose effective domain is D, i.e. such that D = {x| f(x) < +∞} (in
this paper we assume that f(x) > −∞ for all x ∈ X). For the convenience of the
reader we recall from [6] the definition of the γ-subdifferential of the function f
and its properties.

First let us introduce some notations. For an r > 0, set

Sr(x) = {y ∈ X : ‖y − x‖ = r}, S = S1(0),

Ur(x) = {y ∈ X : ‖y − x‖ ≤ r},

intrD = {x ∈ D : ∃r′ = r′(x) > r, Ur′(x) ⊂ D}.

Definition 2.1. The γ-subdifferential of f at x ∈ D, denoted by ∂γf(x), is the
subset of the dual space X∗ given by

{ξ ∈ X∗ : for s ∈ S, there exists λ ∈ [0, γ] such that

γ〈ξ, s〉 ≤ f(x + λs) − f(x − (γ − λ)s)}.

In other words,

∂γf(x) = {ξ ∈ X∗ : for s ∈ S, there exist x′ and x′′ such that

x′ − x′′ = γs, x ∈ [x′, x′′], 〈ξ, x′ − x′′〉 ≤ f(x′) − f(x′′)}.

Here, [x′, x′′] denotes the closed line segment with endpoints x′ and x′′.

Proposition 2.1. [6, Theorem 2.1] Let

∆f,γ(x, s) :=
{f(x′) − f(x′′)

γ
: x ∈ [x′, x′′], x′ − x′′ = γs

}

, x ∈ D, s ∈ S.

Then

∂γf(x) = {ξ ∈ X∗ : 〈ξ, s〉 ∈ conv ∆f,γ(x, s), s ∈ S}.

If f is continuous on Uγ(x) then

∂γf(x) = {ξ ∈ X∗ : 〈ξ, s〉 ∈ ∆f,γ(x, s), s ∈ S}.
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Corollary 2.1. [6, Proposition 2.1] Let X = R and

Mf,γ(x) :=
{f(x′ + γ) − f(x′)

γ
: x ∈ [x′, x′ + γ] ⊂ R, x′ ∈ D

}

, x ∈ D.

Then ∂γf(x) = convMf,γ(x). If f is continuous on [x − γ, x + γ] ⊂ D ⊂ R then

∂γf(x) = Mf,γ(x).

Corollary 2.2. [6, Corollary 2.1] Let x ∈ D and SD(x) := {s ∈ S : x+γs ∈ D}.
Then,

∂γf(x) = {ξ ∈ X∗ : 〈ξ, s〉 ∈ conv∆f,γ(x, s), s ∈ SD(x)}.(2.1)

Corollary 2.1 shows that the γ-subdifferential of a function on the real line is
convex at each point. This is also true for functions on a normed space.

Proposition 2.2. [6, Propositions 2.2–2.3] Suppose f : D ⊂ X → R. Then

(a) ∂γf(x) is convex for all x ∈ D and

(b) ∂γf(x) is compact if dimX < ∞ and f is continuous on Uγ(x).

γ-subdifferential can be used for global optimization. More precisely, we have

Proposition 2.3. Let f : D → R.

(i) If f(x∗) ≤ f(x) for x ∈ Uγ(x∗) ∩ D then 0 ∈ ∂γf(x∗).

(ii) If f(x∗) ≥ f(x) for x ∈ Uγ(x∗) ∩ D then 0 ∈ ∂γf(x∗).

This proposition gives a necessary condition for global optimization, see [6,
Theorems 4.1–4.2]. For any γ-convex function f , if it has a global minimum then
the inclusion 0 ∈ ∂γf(x∗) will be a sufficient condition for a global minimizer
near x∗ as the next proposition shows.

From now on, we assume that D is a nonempty convex subset of X.

Definition 2.2. A function f : D → R is said to be

(i) γ-convex if x0, x1 ∈ D, ‖x1 −x0‖ ≥ γ imply f(x′
0)+ f(x′

1) ≤ f(x0)+ f(x1);

(ii) symmetrically γ-convex if x0, x1 ∈ D, |x1 − x0‖ ≥ γ imply

f(x′
0) ≤

(

1 −
γ

‖x1 − x0‖

)

f(x0) +
γ

‖x1 − x0‖
f(x1),

f(x′
1) ≤

γ

‖x1 − x0‖
f(x0) +

(

1 −
γ

‖x1 − x0‖

)

f(x1),

where x′
0 := x0 + γ

x1 − x0

‖x1 − x0‖
, x′

1 := x1 − γ
x1 − x0

‖x1 − x0‖
.

Obviously, a symmetrically γ-convex function is also γ-convex.

The following may be useful for optimization of γ-convex functions.

Proposition 2.4. [6, Theorems 4.3–4.4] Suppose that f : D ⊂ X → R is γ-

convex and x∗ ∈ D.

(i) If f(x∗) ≤ f(x) for all x ∈ Uγ(x∗) ∩ D then x∗ is a global minimizer.
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(ii) If 0 ∈ ∂γf(x∗) then for each x0 ∈ D\Uγ(x∗) there exists an xk ∈ Uγ(x∗)∩D
with f(xk) ≤ f(x0).

(iii) If 0 ∈ ∂γf(x∗) and if f(x∗) ≤ f(x) for all x ∈ Uγ(x∗) ∩ D then x∗ is a

global minimizer.

We now present another formula which describes γ-subdifferentials of γ-convex
functions.

Proposition 2.5. Suppose that f : D ⊂ X → R is γ-convex and x ∈ D. Then

∂γf(x) =
{

ξ ∈ X∗ : 〈ξ, s〉 ≤
f(x + γs) − f(x)

γ
, s ∈ SD(x)

}

.(2.2)

Proof. Let A be the right hand side of (2.2). If ξ ∈ A then

γ〈ξ, s〉 ≤ f(x + γs) − f(x) for all s ∈ S

because f(x + γs) − f(x) = ∞ whenever s /∈ SD(x). Choosing x′ = x + γs and
x′′ = x, we have γ〈ξ, s〉 ≤ f(x′) − f(x′′). Hence ξ ∈ ∂γf(x), so that A ⊂ ∂γf(x).
Conversely, suppose ξ ∈ ∂γf(x). For s ∈ SD(x), there are x′, x′′ ∈ X satisfying

x′ − x′′ = γs, x ∈ [x′, x′′] and γ〈ξ, s〉 ≤ f(x′) − f(x′′).

Since f is γ-convex and x, x′ ∈ [x′′, x + γs],

f(x′) − f(x′′) ≤ f(x + γs) − f(x).

Hence

γ〈ξ, s〉 ≤ f(x + γs) − f(x) for all s ∈ SD(x).

Thus ξ ∈ A and ∂γf(x) ⊂ A. Consequently, A = ∂γf(x).

Corollary 2.3. Suppose f : D ⊂ R → R is γ-convex. Let

D+
γ = {x ∈ D : x + γ ∈ D},

D−
γ = {x ∈ D : x − γ ∈ D}.

(a) ∂γf(x) = R if x ∈ D \ (D+
γ ∪D−

γ ), and ∂γf(x) =]−∞, (f(x+γ)−f(x))/γ]

if x ∈ D+
γ \ D−

γ .

(b) ∂γf(x) = [(f(x) − f(x − γ))/γ, (f(x + γ) − f(x))/γ] if x ∈ D+
γ ∩ D−

γ .

(c) ∂γf(x) = [(f(x) − f(x − γ))/γ,+∞[ if x ∈ D−
γ \ D+

γ .

Proof. (a) Suppose x ∈ D \ D−
γ . If x /∈ D+

γ then SD(x) = ∅ and (2.2) yields

∂γf(x) = R. If x ∈ D+
γ then SD(x) = {1} and applying (2.2) once more, we get

∂γf(x) =
{

ξ ∈ R : ξ ≤
f(x + γ) − f(x)

γ

}

=
]

−∞,
f(x + γ) − f(x)

γ

]

.

(b) If x ∈ D−
γ ∩ D+

γ then SD(x) = {−1, 1}. Hence ξ ∈ ∂γf(x) iff

ξ ≤
f(x + γ) − f(x)

γ
and − ξ ≤

f(x − γ) − f(x)

γ
·

Thus the assertion (b) holds. Similar arguments apply to the case (c).
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It follows from Corollary 2.3 that for any γ-function f : D ⊂ R → R, ∂γf(x)
is always nonempty and has a simple structure at every x ∈ D. There arises a
question: Is it true that for every γ-convex function f : D ⊂ X → R, ∂γf(x) is
nonempty at least for every x satisfying Uγ(x) ⊂ D? The answer is negative as
Proposition 2.6 below shows.

We recall that a function f on a normed space X is said to be additive if
f(x + y) = f(x) + f(y) for all x, y ∈ X. It is easy to verify that an additive
function is γ-convex for arbitrary positive number γ. If X 6= {0} then there
exists an additive function f on X such that f is not linear. Indeed, there is an
additive function H : R → R that is not linear, see [2, p. 6]. Since X 6= {0}, by
the Hahn-Banach theorem, there is a continuous linear functional ϕ : X → R

such that ϕ 6= 0, i.e., ϕ(X) = R. Let f = H ◦ ϕ then f is additive. If f is linear
then, for any α, β ∈ R, there is an x ∈ X such that ϕ(x) = β and we have

H(αβ) = H(αϕ(x)) = H(ϕ(αx)) = f(αx) = αf(x) = αH(ϕ(x)) = αH(β),

i.e., H is linear, a contradiction. Thus f is not linear.

Proposition 2.6. Suppose that X is a pre-Hilbert space and dimX ≥ 2. Then

there exists a γ-convex function f : X → R such that ∂γf(x) = ∅ for all x ∈ X.

Proof. Let f be an arbitrary additive function on X such that f is not linear.
Then for all x ∈ X and all rational number r, f(rx) = rf(x). Suppose, contrary
to our claim, that ∂γf(x0) 6= ∅ for some x0 ∈ X. Choose any ξ ∈ ∂γf(x0). For
each s ∈ S there exists λ ∈ [0, γ] such that

γ〈ξ, s〉 ≤ f(x + λs) − f(x − (γ − λ)s) = f(γs).

Replacing s by −s we get

−γ〈ξ, s〉 ≤ f(γ(−s)) = −f(γs)

i.e., γ〈ξ, s〉 ≥ f(γs). Hence

γ〈ξ, s〉 = f(γs) for all s ∈ S.(2.3)

Suppose now that s ∈ S and r ∈ R, 0 ≤ |r| < 1. Choose t ∈ R such that
r2 + t2 = 1. Since dimX ≥ 2, there exists s′ ∈ S satisfying (s|s′) = 0 (where (·|·)
denotes the inner product of X). Let y = rs + ts′ and z = rs − ts′ then y, z ∈ S
and 2rs = y + z. Applying (2.3) we have

2f(rγs) = f(2rγs) = f(γy + γz) = f(γy) + f(γz) = γ〈ξ, y〉 + γ〈ξ, z〉

and

γ〈ξ, y〉 + γ〈ξ, z〉 = γ〈ξ, y + z〉 = γ〈ξ, 2rs〉 = 2rγ〈ξ, s〉 = 2rf(γs).

Thus,

f(rγs) = rf(γs) for all s ∈ S and 0 ≤ |r| < 1.(2.4)
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Now for each x ∈ X, x 6= 0 and α ∈ R, we choose a natural number n satisfying
α‖x‖/nγ < 1 and ‖x‖/nγ < 1. Then (2.4) yields

1

n
f(αx) = f

(α

n
x
)

= f
(α‖x‖

nγ
γ

x

‖x‖

)

=
α‖x‖

nγ
f
(

γ
x

‖x‖

)

and

α‖x‖

nγ
f
(

γ
x

‖x‖

)

= αf
(‖x‖

nγ
γ

x

‖x‖

)

= αf
( 1

n
x
)

=
α

n
f(x).

Consequently, f(αx) = αf(x) for all x ∈ X and α ∈ R, i.e., f is linear. This
contradiction completes the proof.

Remark. Proposition (2.6) still holds if it is only assumed that X is a normed
space with dimX ≥ 2. However, the proof is more complicated.

We conclude this section with a property of monotonicity of γ-subdifferentials
of γ-convex functions. We know that subdifferentials of convex functions are
monotone. γ-subdifferentials of γ-convex functions have a similar property.

Proposition 2.7. Suppose that f : D → R is γ-convex. Then

x, y ∈ D, ξ ∈ ∂γf(x), η ∈ ∂γf(y), ‖x − y‖ ≥ γ =⇒ 〈ξ − η, x − y〉 ≥ 0.(2.5)

Proof. Let s =
x − y

‖x − y‖
. For ξ ∈ ∂γf(x), η ∈ ∂γf(y), there exist λ, µ ∈ [0, γ] such

that

γ〈ξ,−s〉 ≤ f(x + λ(−s)) − f(x − (γ − λ)(−s))

and

γ〈η, s〉 ≤ f(y + µs) − f(y − (γ − µ)s).

Hence

γ〈ξ, s〉 ≥ f(x + (γ − λ)s) − f(x − λs)

and

−γ〈η, s〉 ≥ f(y − (γ − µ)s) − f(y + µs).

Therefore

γ〈ξ − η, s〉 ≥ f(x + (γ − λ)s) + f(y − (γ − µ)s) − [f(x − λs) + f(y + µs)] ≥ 0.

The last inequality holds because

‖x + (γ − λ)s − (y − (γ − µ)s)‖ = ‖x − y‖ + 2γ − (λ + µ) ≥ ‖x − y‖ ≥ γ.

Remark. If D ⊂ R then (2.5) is sufficient for the γ-convexity. In fact, by [7,
Theorem 2.3], a function f : D ⊂ R → R is γ-convex iff

ξ ≤ η for all ξ ∈ ∂γf(x), η ∈ ∂γf(x + γ) and {x, x + γ} ⊂ D.
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3. γ-subdifferentials of symmetrically γ-convex functions

In this section, we consider γ-subdifferentials of symmetrically γ-convex func-
tions. It is possible that the intersection of ∂γf(x) of a γ-convex function f and
its Clarke generalized gradient ∂f(x) at x is empty. For instance, f(x) = cos x
is γ-convex for γ = 2π (see [6, Example 2.3]) and ∂γf(x) = {0} while ∂f(x) =
{− sin x} for all x ∈ R. However, the situation is slightly different for symmetri-
cally γ-convex functions.

Proposition 3.1. Suppose that f : D → R is symmetrically γ-convex and x0 ∈
intD. If f is Gâteaux differentiable at x0 then Df(x0) ∈ ∂γf(x0).

Proof. Suppose s ∈ SD(x0) and t > 0 such that x0 − ts ∈ D. Symmetrical
γ-convexity of f implies

f(x0) ≤
γ

γ + t
f(x0 − ts) +

t

γ + t
f(x0 + γs).

Hence,

f(x0 − ts) − f(x0)

t
≥

f(x0) − f(x0 + γs)

γ
·

Letting t ↓ 0 we get

〈Df(x0),−s〉 ≥
f(x0) − f(x0 + γs)

γ
,

i.e.,

〈Df(x0), s〉 ≤
f(x0 + γs) − f(x0)

γ
, s ∈ SD(x0).

That Df(x0) ∈ ∂γf(x0) follows from Proposition 2.5.

Corollary 3.1. If f : D ⊂ R
n → R is symmetrically γ-convex then the set of all

x ∈ intγ D such that ∂γf(x) = ∅ is a set of Lebesgue measure 0.

Proof. This follows from the preceding proposition and the fact that f is differ-
entiable almost everywhere in intγ D, see [3, Corollary 3.7].

Combining Propositions 2.4 and 3.1 we obtain

Corollary 3.2. Suppose that f : D → R is symmetrically γ-convex. If f ′(x0) = 0
and if f(x∗) ≤ f(x) for some x∗ ∈ Uγ(x0) ∩ D and for all x ∈ Uγ(x0) ∩ D, then

x∗ is a global minimizer of f .

We now state a relation between the γ-subdifferential and the Clarke general-
ized gradient of a symmetrically γ-convex function.

Proposition 3.2. Suppose that f : D → R is symmetrically γ-convex and x0 ∈
intγ D. If f is locally Lipschitzian at x0 and continuous at each point of Sγ(x0)
then ∂f(x0) ⊂ ∂γf(x0), where ∂f(x0) is the Clarke generalized gradient of f at

x0. In particular, ∂γf(x0) is nonempty.
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Proof. Suppose s ∈ S. The generalized directional derivative of f at x0 in the
direction s, denoted as f◦(x0; s), is defined by

f◦(x0; s) = lim
ε↓ 0

sup
‖x−x0‖<ε

sup
0<t<ε

f(x + ts) − f(x)

t
(3.1)

(see [1, p. 36]). Since f is locally Lipschitzian at x0, there exist a positive number
K and a ball Ur(x0) such that

|f(x) − f(x′)| ≤ K‖x − x′‖ for all x, x′ ∈ Ur(x0).

Let ε satisfy 0 < ε < r and Uγ+2ε(x0) ⊂ D. For

x ∈ X, ‖x − x0‖ < ε, s ∈ S and 0 < t < ε,

we have x + (t + γ)s ∈ Uγ+2ε(x0). Hence

f(x + ts) ≤
γ

γ + t
f(x) +

t

γ + t
f(x + (t + γ)s).

Consequently,

f(x + ts) − f(x)

t
≤

f(x + (t + γ)s) − f(x)

γ + t
.(3.2)

On the other hand, since ε < r,
∣

∣[f(x + (t + γ)s) − f(x)] − [f(x0 + (t + γ)s) − f(x0)]
∣

∣

≤
∣

∣f(x + (t + γ)s) − f(x0 + (t + γ)s)
∣

∣ +
∣

∣f(x) − f(x0)
∣

∣

≤
∣

∣f(x + (t + γ)s) − f(x0 + (t + γ)s)
∣

∣ + K‖x − x0‖

≤
∣

∣f(x + (t + γ)s) − f(x0 + (t + γ)s)
∣

∣ + Kε.

Thus, (3.2) yields

sup
0<t<ε

f(x + ts) − f(x)

t
≤(3.3)

sup
0<t<ε

[f(x0 + (t + γ)s) − f(x0) + |f(x + (t + γ)s) − f(x0 + (t + γ)s)|

t + γ
+

Kε

t + γ

]

.

Since f is continuous at x0 + γs, (3.1) and (3.3) imply

f◦(x0; s) ≤
f(x0 + γs) − f(x0)

γ
·

If ξ ∈ ∂f(x0) := {ϕ ∈ X∗ : 〈ϕ, v〉 ≤ f◦(x0; v) for all v ∈ X} (see [1, p. 27]) and if
s ∈ S then 〈ξ, s〉 ≤ f◦(x0; s). Hence

〈ξ, s〉 ≤
f(x0 + γs) − f(x0)

γ
for all s ∈ S.

Thus by (2.2), ξ ∈ ∂γf(x0), i.e., ∂f(x0) ⊂ ∂γf(x0). Finally, ∂f(x0) is nonempty
(see [1, p. 27]) and so is ∂γf(x0).

Corollary 3.3. If f : D → R is symmetrically γ-convex and locally Lipschitzian

at an x0 ∈ int2γ D then ∅ 6= ∂f(x0) ⊂ ∂γf(x0).
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Proof. Since Sγ(x0) ⊂ intγ D, the proof follows from Proposition 3.3 and [3,
Corollary 3.6].

An immediate result of the preceding corollary and [4, Corollary 2.1] is the
following.

Corollary 3.4. If f : D → R is symmetrically γ-convex and bounded from above
on a ball Ur(x0) ⊂ D for some r > 2γ then ∅ 6= ∂f(x0) ⊂ ∂γf(x0).

Corollary 3.5. If dim X < ∞ and f : D ⊂ X → R is symmetrically γ-convex
then ∂γf(x0) is nonempty, convex and compact whenever x0 ∈ int2γ D.

Proof. Applying Corollary 3.3 and [3, Theorem 3.1] again, we get ∅ 6= ∂f(x0) ⊂
∂γf(x0). The convexity and the compactness of ∂γf(x0) follow from [3, Theorem
3.1] and Proposition 2.2.

4. Concluding remarks

In this paper we have presented some sufficient conditions for nonemptiness of
the γ-subdifferential of a symmetrically γ-convex function. Some open questions
are the following:

Is there a γ-convex function f defined on all of the space X that is continuous
and ∂γf(x) = ∅ at some point x ∈ X?

Under which condition, a set-valued map T : X → 2X∗

will be the γ-subdiffe-
rential of a γ-convex function?

These and other questions will be subjects of further investigation.
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