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LINEAR EQUATIONS WITH

GENERALIZED RIGHT INVERTIBLE OPERATORS

NGUYEN VAN MAU AND PHAM THI BACH NGOC

Abstract. Let X be a linear space over a field K of scalars and let R1(X)
be the set of all generalized right invertible operators in L(X). Consider the
general linear equation with generalized right invertible operator V of the form

M∑
m=0

N∑
n=0

V mAmnV nx = y, y ∈ X,

where Amn ∈ L0(X), AMN = I , AmnXM+N−n ⊂ Xm, Xj := domV j . Similar
equations with right invertible operators were studied by Przeworska-Rolewicz,
and others (see [1], [2], [3]). In [4], N. V. Mau and N. M. Tuan constructed
the generalized right invertible operators. In this paper, we present some new
properties of generalized right invertible operators and then apply them to
obtain all solutions of the general linear equations for the genezalized right
invertible operator V with non-commutative cofficients.

1. Prelimilaries and notations

Let X be a linear space over a fielld K of scalars. Denote by L(X) the set of
all linear operators with domains and ranges in X and write

L0(X) = {A ∈ L(X) : dom A = X}.

The set of all right (left, generalized) invertible operators in L(X) will be denoted
by R(X) (resp. Λ(X), W (X)) (see [1]-[3]). Denote by R1(X) the set of all
generalized right invertible operators belonging to L(X). For V ∈ R1(X) we
denote by R1

V the set of all right inverses of V , i.e,

R1
V =

{
W ∈ L(X) : Im V ⊂ dom W, Im W ⊂ dom V, V WV = V, V 2W = V

}
,

by FV the set of all right initial operators of V , i.e,

FV =
{
F ∈ L(X) : F 2 = F, Im F = ker V and ∃W ∈ R1

V : FW = 0 on dom W
}
,

and by GV the set of all left initial operators of V , i.e.

GV =
{
G ∈ L(X) : G2 = G, GV = 0 on dom V and ∃W ∈ R1

V : Im G = ker W
}
.

Lemma 1.1. For every V ∈ R1(X) there exists W ∈ R1
V such that

WV W = W, V W 2 = W on dom W.
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Proof. Let W1 ∈ R1
V . Write W = V W 2

1 V W1. We have

V 2W = V 2V W 2
1 V W1 = V V W1 = V,

V WV = V V W 2
1 V W1V = V W1V W1V = V W1V = V,

V W 2 = V V W 2
1 V W1V W 2

1 V W1 = V W1V W1V W 2
1 V W1 = V W 2

1 V W1 = W,

WV W = V W 2
1 V W1V V W 2

1 V W1 = V W 2
1 V 2W 2

1 V W1 = V W 2
1 V W1 = W,

which was to be proved.

Write

R
(1)
V =

{
W ∈ R1

V : WV W = W, V W 2 = W
}
.

Lemma 1.2. Suppose that V ∈ R1(X), dim ker V 6= 0, dim coker V 6= 0 and
W ∈ R1

V . Then for an arbitrary positive N , we have

(i) ker V N =
{

x ∈ X : x =
N−1∑
k=0

W kzk, z0, . . . , zN−1 ∈ ker V
}
.

(ii) dom V N = W NV NXN

⊕
ker V N , XN := dom V N .

Proof. (i) Suppose that z =
N−1∑
k=0

W kzk where z0, . . . , zN−1 ∈ ker V . Then

V Nz = V N
N−1∑

k=0

W kzk =
N−1∑

k=0

V N−kzk = 0,

which implies z ∈ ker V N . Conversely, suppose that z ∈ ker V N . Then the Taylor
Formula (see [3]) implies that

z =

N−1∑

k=0

W kFV kz + W NV Nz =

N−1∑

k=0

W kzk.

Write zk = FV kz for k = 0, . . . , N − 1. By definition, z0, . . . , zN−1 ∈ ker V .
Thus z is of the required form.

(ii) Suppose that x ∈ dom V N . We can write x = u + v, where u = W NV Nx,
v = (I − W NV N )x. By definition, u ∈ W NV NXN and V Nv = 0. Hence
v ∈ ker V N and x = u+v ∈ W NV NXN +ker V N . Suppose now that x ∈ dom V N ,
z ∈ ker V N and W ∈ R1

V are arbitrarily fixed. Then y = W NV Nx+ z ∈ dom V N

for V Ny = V NW NV Nx + V Nz = V Nx.

Suppose that u ∈ W NV NXN ∩ker V N . Then there is a v ∈ dom V N such that
u = W NV Nv and V Nu = 0. On the other hand, V Nv = V NW NV Nv = V Nu =
0, which implies u = W NV Nv = 0. This means that dom V N is a direct sum of
W NV NXN and ker V N . The proof is complete.

Corollary 1.1. Suppose that all assumptions of Lemma 1.2 are satisfied, then

dom V N =
{
x ∈ X : x = W Ny +

N−1∑

k=0

W kzk, y ∈ XN , zk ∈ ker, V
}

.
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2. Equations with generalized right invertible operators

To begin with, we consider the equation

V Nx = y, y ∈ X, N ∈ N.(2.1)

Theorem 2.1. Suppose that V ∈ R1(X), dim ker V 6= 0, dimcoker V 6= 0 and
W ∈ R1

V . If y ∈ Im V N , then all solutions of (2.1) are given by

x = W Ny +

N−1∑

k=0

W kzk,(2.2)

where z0, . . . , zN−1 ∈ ker V are arbitrary.

Proof. If y ∈ Im V N , then there is y1 ∈ dom V N such that y = V Ny1. Hence,
(2.1) can be writen in the form V Nx = V Ny1. Since V N = V NW NV N , the last
equation is equivalent to V N (x−W NV Ny1) = 0. Lemma 1.2 implies the formula
(2.2).

Now consider the equation

(V N − A)x = y, y ∈ X, A ∈ L0(X), N ∈ N.(2.3)

Theorem 2.2. Suppose that V ∈ R1(X), W ∈ R1
V , A ∈ L0(X), AXN ⊂ Im V N

and y ∈ (V N − A)XN .

(i) If I −W NA ∈ R(X) and RA ∈ RI−W NA, then all solutions of the equation
(2.3) are given by

x = RA

(
W Ny +

N−1∑

k=0

W kzk

)
+ z,(2.4)

where z0, . . . , zN−1 ∈ ker V , z ∈ ker(I − W NA).

(ii) If I −W NA ∈ Λ(X) and LA ∈ LI−W NA, then all solutions of the equation
(2.3) are given by

x = LA

(
W Ny +

N−1∑

k=0

W kzk

)
,(2.5)

where z0, . . . , zN−1 ∈ ker V .

(iii) If I − W NA ∈ W (X) and WA ∈ WI−W NA, then all solutions of the
equation (2.3) are given by

x = WA

(
W Ny +

N−1∑

k=0

W kzk

)
+ z,(2.6)

where z0, . . . , zN−1 ∈ ker V , z ∈ ker (I − W NA).
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(iv) If I −W NA is invertible, then all solutions of the equation (2.3) are given
by

x =
(
I − W NA

)
−1

(
W Ny +

N−1∑

k=0

W kzk

)
,(2.7)

where z0, . . . , zN−1 ∈ ker V .

Proof. Suppose that y ∈ (V N − A)(dom V N ). Then there exists an x ∈ dom V N

such that (V N − A)x = y, i.e. V Nx = Ax + y. By Theorem 2.1, there exist

z0, . . . , zN−1 ∈ ker V such that x = W N (Ax + y) +
N−1∑
k=0

W kzk. Since AXN ⊂

ImV N , we have Ax ∈ Im V N ⊂ dom W N and

(I − W NA)x = W Ny +
N−1∑

k=0

W kzk.(2.8)

By Theorem 11.2 in [3] and (2.8), we get all formulae (2.4)-(2.7).

We shall consider now the general equation of the form

Q[V ]x :=
M∑

m=0

N∑

n=0

V mAmnV nx = y, y ∈ Im Q[V ],(2.9)

where V ∈ R1(X), Amn ∈ L0(X), AMN = I, AmnXM+N−n ∈ Xm, (m =
0, . . . ,M ; n = 0, . . . , N ; m + n < M + N ; Xj := dom V j; j = 1, . . . ,M + N).

Write

Q(V ) :=

N∑

j=0

BjV
j,

Q(I,W ) :=
N∑

j=0

BjW
N−j.

Lemma 2.1. Suppose that V ∈ R1(X) and W ∈ R1
V . Suppose moreover that we

are given Bj ∈ L0(X), (j = 0, . . . , N) and k ∈ N such that XN−j ⊂ dom Bj ,
BjXN−j ⊂ Xk, j = 0, . . . , N . Then

XN ⊂ dom Q(V ),

Q(V )XN ⊂ Xk,

[I + W NQ(V )]XN+k ⊂ XN+k,

Q(I,W )X ⊂ Xk,

[I + Q(I,W )]Xk ⊂ Xk.

Proof. Note that V jXN ⊂ XN−j, (j = 0, . . . , N).

If j = 0 or j = N , then XN ⊂ XN or V NXN ⊂ X.
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If 1 ≤ j ≤ N − 1 and x ∈ XN , there exist x0 ∈ ImV N , z0, . . . , zN−1 ∈ ker V

such that

x = W Nx0 +

N−1∑

k=0

W kzk,

V jx = W N−jx0 +

N−1∑

k=j+1

W k−jzk + V Wzj .

Put l = k − j, V Wzj = z0 ∈ ker V . Then

V jx = W N−jx0 +

N−j−1∑

l=1

W lzl+j + z0.

Thus V jXN ⊂ XN−j. Therefore BjV
jXN ⊂ BjXN−j ⊂ Xk (j = 0, . . . , N),

which implies XN ⊂ dom Q(V ) and Q(V )XN ⊂ Xk.

Suppose that u ∈
[
I + W NQ(V )

]
XN+k. Then there exists v ∈ XN+k ⊂ XN

such that u =
[
I + W NQ(V )

]
v. Since v1 = Q(V )v ∈ Xk, we conclude that

u = v + W Nv1 ∈ XN+k, because v ∈ XN+k and W Nv1 ∈ XN+k. Note that
W jX ⊂ Xj . Hence, BjW

N−jX ⊂ BjXN−j ⊂ Xk, (j = 0, . . . , N), which implies
Q(I,W )X ⊂ Xk.

Suppose that y ∈
[
I +Q(I,W )

]
Xk, i.e. there exists y1 ∈ Xk such that y = [I +

Q(I,W )]y1. Since y2 = Q(I,W )y1 ∈ Xk, we conclude that y = y1 + y2 ∈ Xk.

Puting k = N in Lemma 2.1 we obtain

Corollary 2.1. Suppose that all assumptions of Lemma 2.1 are satisfied, then

[I + W NQ(V )]XN ⊂ XN .

Definition 2.1. An operator A ∈ L(X) is said to be right invertible (left invert-
ible, invertible, generalized invertible) on Xk for a given k ∈ N

+ if Xk ⊂ dom A,
AXk ⊂ Xk and there exists RA ∈ RA (resp. LA ∈ LA, MA ∈ RA∩LA, WA ∈ WA)
such that RAXk ⊂ Xk (resp. LAXk ⊂ Xk, MAXk ⊂ Xk, WAXk ⊂ Xk).

By this definition, if A is right invertible (left invertible, invertible, generalized
invertible) on Xk for k ≥ 1 then A is right invertible (left invertible, invertible,
generalized invertible).

Lemma 2.2. Suppose that all assumptions of Lemma 2.1 are satisfied, then the
operator I + Q(I,W )−BNG is right invertible (left invertible, invertible, gener-
alized invertible) on Xk for k ≥ 1 if only if I + W NQ(V ) is right invertible (left
invertible, invertible, generalized invertible) on XN+k, where G ∈ GV .

Proof. By Lemma 2.1, we have

I + Q(I,W ) − BNG = I + Q(V )W N ⊂ L0(Xk),

I + W NQ(V ) ∈ L0(XN+k).
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(i) Suppose that I + Q(I,W )−BNG is right invertible on Xk, i.e. there exists
RQ ∈ RI+Q(V )W N such that RQXk ⊂ Xk and

[
I + Q(V )W N

]
RQ = I. Write

RQ = I − W NRQQ(V ). We have to check that RQ is well defined on XN+k and

RQXN+k ⊂ XN+k. On XN+k we have

[
I + W NQ(V )

]
RQ =

[
I + W NQ(V )

][
I − W NRQQ(V )

]

= I + W NQ(V ) −
[
I + W NQ(V )

]
W NRQQ(V )

= I + W NQ(V ) − W N
[
I + Q(V )W N

]
RQQ(V )

= I + W NQ(V ) − W NQ(V ) = I,

which proves that I + W NQ(V ) is right invertible on XN+k.

Conversely, suppose that I + W NQ(V ) is right invertible on XN+k, i.e. there
exists RQ ∈ RI+W NQ(V ) such that RQXN+k ⊂ XN+k and [I + W NQ(V )]RQ = I

on XN+k. Write RQ = I − Q(V )RQW N . If x ∈ Xk then u = W Nx ∈ XN+k,

y = RQu ∈ XN+k and

RQx =
[
I − Q(V )RQW N

]
x = x − Q(V )y ∈ Xk.

On Xk we have

[
I + Q(I,W ) − BNG

]
RQ =

[
I + Q(V )W N

][
I − Q(V )RQW N

]

= I + Q(V )W N −
[
I + Q(V )W N

]
Q(V )RQW N

= I + Q(V )W N − Q(V )
[
I + W NQ(V )

]
RQW N

= I + Q(V )W N − Q(V )W N = I,

which proves that I + Q(I,W ) − BNG is right invertible on Xk.

In the same way, we can get proofs for the other cases. For instances, putting
k = 0 in Lemma 2.2 we obtain

Corollary 2.2. Suppose that all assumptions of Lemma 2.1 are satisfied then
the operator I + Q(I,W ) − BNG is right invertible (left invertible, invertible,
generalized invertible) if and only if I+W NQ(V ) is right invertible (left invertible,
invertible, generalized invertible) on XN , where G ∈ GV .

Corollary 2.3. Suppose that all assumptions of Lemma 2.1 are satisfied. If I +
Q(I,W ) − BNG is invertible, then unique solution of the equation

[
I + W NQ(V )

]
x = y, y ∈ XN ,

belongs to XN .
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Theorem 2.3. Suppose that V ∈ R1(X), W ∈ R
(1)
V and Q[V ] is given (2.9).

Write

Q(A) :=
M∑

m=0

N∑

n=0

W M−mAmnW N−n −
M∑

m=0

W M−mÃmNG,(2.10)

Q̃(A) :=

M∑

m=0

N∑

n=0

W M−mÃmnV n,(2.11)

Ãmn :=

{
0 if m = M, n = N,

Amn if m + n < M + N.
(2.12)

(i) If Q(A) is invertible, then all solutions of the equation (2.9) are given by

x =
[
I − W NQ−1(A)Q̃(A)

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,(2.13)

where z0, . . . , zM+N−1 ∈ ker V are arbitrary.

(ii) If Q(A) ∈ R(X) and RQ ∈ RQ(A), then all solutions of the equation (2.9)
are given by

x =
[
I − W NRQQ̃(A)

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,(2.14)

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker [I + W N Q̃(A)] are arbitrary.

(iii) If Q(A) ∈ Λ(X) and LQ ∈ LQ(A), then (2.9) is solvable if and only if there
exist z0, . . . , zM+N−1 ∈ ker V and y ∈ XM+N such that

W M+Ny +
M+N−1∑

j=0

W jzj ∈
[
I + W N Q̃(A)

]
XM+N .(2.15)

If this condition is satisfied, then all solutions of the equation (2.9) are given by

x =
[
I − W NLQQ̃(A)

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,(2.16)

where z0, . . . , zM+N−1 ∈ ker V are arbitrary.

(iv) If Q(A) ∈ W (X) and WQ ∈ WQ(A), then (2.9) is solvable if and only if
condition (2.15) is satisfied and then all solutions of the equation (2.9) are given
by

x =
[
I − W NWQQ̃(A)

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,(2.17)

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker [I + W N Q̃(A)] are arbitrary.
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Proof. We have

( M∑

m=0

N∑

n=0

V mAmnV n
)
x = y,

(
V M+N +

M∑

m=0

N∑

n=0

V mÃmnV n
)
x = y,

[
V M+N

(
I +

M∑

m=1

N∑

n=0

W M+N−mÃmnV n
)

+

N∑

n=0

Ã0NV n
]
x = y.

By Theorem 2.2, we imply

(
I +

M∑

m=1

N∑

n=0

W M+N−mÃmnV n
)
x = W M+N

(
y −

N∑

n=0

Ã0NV nx
)

+

M+N−1∑

j=0

W jzj

(
I + W N

M∑

m=0

N∑

n=0

W M−mÃmnV n
)
x = W M+Ny +

M+N−1∑

j=0

W jzj

[
I + W N Q̃(A)

]
x = W M+Ny +

M+N−1∑

j=0

W jzj .(2.18)

It is easy to see that

Q(A) = I + Q̃(A)W N .(2.19)

(i) If Q(A) is invertible, then Q(A) is invertible on XM . Lemma 2.2 and (2.19)
together imply that

[
I + W N Q̃(A)

]
−1

:= I − W NQ−1(A)Q̃(A).

This and (2.18) imply (2.13).

(ii) If Q(A) is right invertible, then Q(A) is right invertible on XM . Lemma 2.2

and (2.19) together imply that I + W NQ̃(A) is right invertible on XM+N . More-

over, R
Q̃

:= I −W NRQQ̃(A) is a right inverse of I + W NQ̃(A) and R
Q̃
XM+N ⊂

XM+N . This and (2.18) together imply (2.14).

(iii) If Q(A) is left invertible, then Q(A) is left invertible on XM . Lemma 2.2

and (2.19) together imply I + W N Q̃(A) is left invertible on XM+N . Moreover,

L
Q̃

:= I −W NLQQ̃(A) is a left inverse of I +W NQ̃(A) and L
Q̃
XM+N ⊂ XM+N .

This and (2.18) imply that (2.9) has solutions if only if the condition (2.15) is
satisfied. If this is the case, all solutions are of the form (2.16).

(iv) If Q(A) is generalized invertible, then Q(A) is generalized invertible on

XM . Lemma 2.2 and (2.19) together imply that I + W N Q̃(A) is generalized

invertible on XM+N . Moreover, W
Q̃

= I − W NWQQ̃(A) is a generalized inverse

of I + W N Q̃(A) and W
Q̃
XM+N ⊂ XM+N . This and (2.18) imply that (2.9) has
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solutions if only if the condition (2.15) is satisfied. If this is the case, all solutions
are of the form (2.17). The theorem is complete.

Putting Amn = 0, (m = 0, . . . ,M − 1; n = 0, . . . , N) and AMn = An, (n =
0, . . . , N) in Theorem 2.3, we obtain

Corollary 2.4. Suppose that V ∈ R1(X) and W ∈ R
(1)
V . Write

Q(V ) :=

N∑

n=0

AnV n, P (V ) := V MQ(V ),

Q1 :=
N∑

n=0

AnW N−n, Q̃1 :=
N−1∑

n=0

AnV n.

(i) If Q1 is invertible, then all solutions of the equation

P (V )x = y, y ∈ Im P (V )(2.20)

are given by

x =
[
I − W NQ−1

1 Q̃1

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,

where z0, . . . , zM+N−1 ∈ ker V are arbritrary.

(ii) If Q1 ∈ R(X) and RQ1
∈ RQ1

, then all solutions of the equation (2.20) are
given by

x =
[
I − W NRQ1

Q̃1

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker
[
I + W N Q̃1

]
are arbitrary.

(iii) If Q1 ∈ Λ(X) and LQ1
∈ LQ1

, then (2.20) is solvable if and only if there
exist z0, . . . , zM+N−1 ∈ ker V and y ∈ XM+N such that

W M+Ny +

M+N−1∑

j=0

W jzj ∈
(
I + W NQ̃1

)
XM+N .(2.21)

If this condition is satisfied, then all solutions of the equation (2.20) are given by

x =
[
I − W NLQQ̃1

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,

where z0, . . . , zM+N−1 ∈ ker V are arbitrary.

(iv) If Q1 ∈ W (X) and WQ1
∈ WQ1

, then (2.20) is solvable if and only if
condition (2.21) is satisfied, then all solutions of the equation (2.20) are given by

x =
[
I − W NWQQ̃1

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,



134 NGUYEN VAN MAU AND PHAM THI BACH NGOC

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker [I + W N Q̃1] are arbitrary.

Putting Amn = 0, (m = 0, . . . ,M ; n = 0, . . . , N − 1) and AmN = Am,
(m = 0, . . . ,M) in Theorem 2.3, we obtain

Corollary 2.5. Suppose that V ∈ R1(X), W ∈ R
(1)
V , and G ∈ GV . Write

Q〈V 〉 :=

M∑

m=0

V mAm, P 〈V 〉 := Q〈V 〉V N ,

Q2 :=
M∑

m=0

W M−mAm −
M−1∑

m=0

W M−mAmG, Q̃2 :=
M−1∑

m=0

W M−mAmV N .

(i) If Q2 is invertible, then all solutions of the equation

P 〈V 〉x = y, y ∈ Im P 〈V 〉,(2.22)

are given by

x =
[
I − W NQ−1

2 Q̃2

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,

where z0, . . . , zM+N−1 ∈ ker V are arbitrary.

(ii) If Q2 ∈ R(X) and RQ2
∈ RQ2

, then all solutions of the equation (2.22) are
given by

x =
[
I − W NRQ2

Q̃2

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker
(
I + W NQ̃2

)
are arbitrary.

(iii) If Q2 ∈ Λ(X) and LQ2
∈ LQ2

, then (2.22) is solvable if and only if there
exist z0, . . . , zM+N−1 ∈ ker V and y ∈ XM+N such that

W M+Ny +

M+N−1∑

j=0

W jzj ∈
(
I + W NQ̃2

)
XM+N .(2.23)

If this condition is satisfied, then all solutions of the equation (2.22) are given by

x =
[
I − W NLQQ2

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
,

where z0, . . . , zM+N−1 ∈ ker V are arbitrary.

(iv) If Q2 ∈ W (X) and WQ2
∈ WQ2

, then (2.22) is solvable if and only if
condition (2.23) is satisfied, then all solutions of the equation (2.22) are given by

x =
[
I − W NWQQ2

](
W M+Ny +

M+N−1∑

j=0

W jzj

)
+ z,

where z0, . . . , zM+N−1 ∈ ker V , z ∈ ker
[
I + W N Q̃2

]
are arbitrary.
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Example 2.6. Let X be a linear space, let V ∈ R1(X), dimker V 6= 0,

dimcoker V 6= 0, W ∈ R
(1)
V and let A,B ∈ L0(X), AX ⊂ dom V . Consider

the equation

(V AV + B)x = y, y ∈ Im (V AV + B).(2.24)

It can be written as V 2
[
I + W (AV − V )

]
x = y − Bx, which is equivalent to

[
I + W (AV − V + WB)

]
x = W 2y + Wz1 + z0.

Write Q(A,B) = I + (AV − V + WB)W = G + A(I − G) + WBW for G ∈ GV .

(i) If Q(A,B) is invertible, then all solutions of the equation (2.24) are given
by

x =
[
I − WQ−1(A,B)(AV − V + WB)

](
W 2y + Wz1 + z0

)
.

(ii) If Q(A,B) ∈ R(X) and RQ ∈ RQ(A,B), then all solutions of the equation
(2.24) are given by

x =
[
I − WRQ(AV − V + WB)

](
W 2y + Wz1 + z0

)
+ z.

(iii) If Q(A,B) ∈ Λ(X) and LQ ∈ LQ(A,B), then all solutions of the equation
(2.24) are given by

x =
[
I − WLQ(AV − V + WB)

](
W 2y + Wz1 + z0

)
.

(iv) If Q(A,B) ∈ W (X) and WQ ∈ WQ(A,B), then all solutions of the equation
(2.24) are given by

x =
[
I − WWQ(AV − V + WB)

](
W 2y + Wz1 + z0,

)
+ z,

where z0, z1 ∈ ker V , z ∈ ker [I + W (AV − V + WB)] are arbitrary.
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