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OPTIMALITY CONDITIONS FOR CONTROLS

ACTING AS COEFFICIENTS

OF A NONLINEAR ORDINARY DIFFERENTIAL EQUATION

OF SECOND ORDER

MOHAMED AKKOUCHI, ABDELLAH BOUNABAT, AND MANFRED GOEBEL

Abstract. We study in this paper a control problem associated to a semi-
linear second order ordinary differential equation with pointwise state con-
straints. The control acts as a coefficient of the state equation. For this
problem, we prove the existence of optimal controls and obtain a necessary
optimality condition. This condition looks somehow like Pontryagin’s maxi-
mum principle. We end this work by giving illustrative examples where we
apply our results.

1. Introduction and statement of the problem

The purpose of this paper is to study the following control problem where
the controls play as coefficients of a nonlinear second order differential equation.
The nonlinear character of this equation is given by the action of a Nemytskij
operator. To be precise, we are concerned by finding:

inf J (y), J (y) =

1
∫

0

(y(x) − h(x))2 dx,

where the state y verifies the equation:

d

dx

(y′(x)

u(x)

)

+ θ(y(x)) = 0, x ∈ (0, 1), y(0) = 0, y′(1) = 0,(1)

under the constraints

0 ≤ y(x) ≤ a ∀x ∈ [0, 1],(2)

where h is a fixed continuous function on [0, 1], and a > 0 is a fixed number.
The control u is belonging to a compact subset Σad of the Banach space C([0, 1])
which is contained in C1([0, 1]), and verifying ω ≤ u(x) ≤ Ω for all x ∈ [0, 1],
where ω and Ω are fixed numbers in ]0,∞[. For example, we may take

Received October 16, 2000.
1991 Mathematics Subject Classification. 49K15, 49J15.



116 M. AKKOUCHI, A. BOUNABAT, AND M. GOEBEL

Σad =
{

u ∈ C1([0, 1]) : ω ≤ u(x) ≤ Ω ∀x ∈ [0, 1],

|u(x1) − u(x2)| ≤ k|x1 − x2|, ∀x1, x2 ∈ [0, 1]}.(3)

where k ∈]0,∞[. The function θ ∈ C1([0, a]) is supposed to verify 0 ≤ θ(x) ≤ b

for all x ∈ [0, a] and

|θ(x1) − θ(x2)| ≤ l|x1 − x2|, ∀x1, x2 ∈ [0, a],

where b, l are two fixed numbers in ]0,∞[.

We shall denote our control problem by Pθ. We see that the controls are acting
in this setting as coefficients for the state equation associated to Pθ. Similar
problems were considered in [2], [5], and [4], by completely different methods.
General remarks concerning coefficient control problems in both ordinary and
partial differential equations can be found in [6]. We notice that this paper is
a sequel of the papers [3], [1] where investigations are made for smooth and
nonsmooth optimal Lipschitz control for problems governed by semilinear second
order differential equations in which the nonlinear part is given by the action of
a Nemytskij operator.

2. Solutions of the state equation and existence
of optimal controls

In this section, we give some sufficient conditions ensuring existence for so-
lutions to our problem. These conditions are expressed by some inequalities
involving the fixed parameters ω, Ω, a, b, k, l listed above.

Existence and uniqueness of the solution of the problem Pθ

Let u ∈ Σad, and let Gu = Gu(x, ξ) be the uniquely determined Green’s
function to the next boundary problem

d

dx

[y′(x)

u(x)

]

= 0, x ∈ (0, 1), y(0) = 0, y′(1) = 0,(4)

An easy computation shows that Gu is given by































Gu(x, ξ) = −

ξ
∫

0

u(s) ds for 0 ≤ ξ ≤ x ≤ 1,

Gu(x, ξ) = −

x
∫

0

u(s) ds for 0 ≤ x ≤ ξ ≤ 1.

Gu is continuous and symmetric on [0, 1] × [0, 1] and the following estimations
hold
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0 ≤ −Gu(x, ξ) ≤ Ω ∀x, ξ ∈ [0, 1], and

0 ≤ −

1
∫

0

Gu(x, ξ) dξ ≤

1
∫

0

(1 − s)u(s) ds ≤
Ω

2
∀x ∈ [0, 1].

In all what follows, we suppose that bΩ ≤ 2a, and that lΩ < 2. The Banach
space C([0, 1]) will be endowed with its usual norm denoted by ‖.‖C([0,1]). We
consider the subset B+(a) of C([0, 1]) defined by

B+(a) :=
{

y ∈ C([0, 1]) : 0 ≤ y(x) ≤ a ∀x ∈ [0, 1]
}

and take a fixed control u ∈ Σad. It is clear that an element y ∈ C2([0, 1])∩B+(a)
is a solution to the nonlinear boundary value problem (1) associated to Pθ if and
only if y ∈ B+(a) and y is a solution to the Hammerstein integral equation

y(x) = −

1
∫

0

Gu(x, ξ)θ(y(ξ)) dξ ∀x ∈ [0, 1].(5)

This consideration will enable us to state and prove our first result.

Theorem 2.1. For each control u ∈ Σad, the boundary value problem (1) as-
sociated to Pθ has a unique solution yu. Moreover, this solution belongs to
C2([0, 1]) ∩B+(a).

Proof. Let u ∈ Σad be fixed and associate to it the map Tu defined from B+(a)
to C([0, 1]) by

Tu(y)(x) := −

1
∫

0

Gu(x, ξ)θ(y(ξ)) dξ ∀x ∈ [0, 1].(6)

An easy computation will show that for all y, z ∈ B+(a) we have

‖Tu(y) − Tu(z)‖C([0,1]) ≤
lΩ

2
‖y − z‖C([0,1]).(7)

According to the fact that bΩ ≤ 2a, we see that Tu(B+(a)) ⊂ B+(a). Moreover,
since by asssumption we have lΩ < 2, then the map Tu must be a contraction
from B+(a) to itself. Since the set B+(a) is a closed (convex) subset of the Banach
space C([0, 1]), we can use the Banach fixed point theorem and assert that Tu

has a unique fixed point yu ∈ B+(a). This ensures the solvability of (1) and the
uniqueness of the solution to this problem.

Existence of optimal controls for the problem Pθ

To each control u ∈ Σad we associate the unique solution S(u) = yu to the
problem (1) (under condition (2)). One can see that S is a Lipschitz continu-
ous map from the compact convex subset Σad of C([0, 1]) to the Banach space
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C([0, 1]). Indeed, for all controls u, v ∈ Σad, an easy computation will give the
following estimation

‖yu − yv‖C([0,1]) ≤
2b

2 − lΩ
‖u− v‖C([0,a]).(8)

Now, we can prove the existence of optimal controls for our problem Pθ.

Theorem 2.2. The optimal control problem Pθ has an optimal solution u0 ∈
Σad.

Proof. For each control u ∈ Σad we set j(u) := J (yu). We obtain by easy
computation the following estimation

|j(u) − j(v)| ≤
4b(a+ ‖h‖C([0,1]))

2 − lΩ
‖u− v‖C([0,1]).(9)

This inequality says that the map j is Lipschitz continuous from the compact
subset Σad of the Banach space C([0, 1]) to the set of real numbers. Hence, using
the classical Weierstrass theorem, we see that there exists at least one optimal
control to our problem (Pθ).

3. Necessary optimality conditions for Pθ

Let u0 ∈ Σad be an optimal control to the problem Pθ and u ∈ Σad another
admissible control. The respective states are denoted by y0 = S(u0) and yu =
S(u). For any λ ∈ [0, 1] we set

uλ := u0 + λ(u− u0) ∈ Σad, and yλ := S(uλ).

From (8) we see that

∥

∥yλ − y0

∥

∥

C([0,1])
≤

2bλ

2 − lΩ

∥

∥u− u0

∥

∥

C([0,1])
, ∀λ ∈ [0, 1].(10)

We set q(x) :=
1
∫

0

Gu(x, ξ)θ(y0(ξ)) dξ for all x ∈ [0, 1], and consider the map Υ

from C([0, 1]) to itself defined for all z ∈ C([0, 1]) by

Υ(z)(x) := −y0(x) − q(x) −

1
∫

0

Gu0
(x, ξ)θ′(y0(ξ))z(ξ) dξ ∀x ∈ [0, 1].

We see that q and Υ depend on the controls u0, and u. By an easy computation
we obtain for all z1, z2 ∈ C([0, 1]) the following estimation

∥

∥Υ(z1) − Υ(z2)
∥

∥

C([0,1])
≤
lΩ

2

∥

∥z1 − z2
∥

∥

C([0,1])
.(11)

Inequality (11) shows that the map Υ is Lipschitz continuous and we can apply
the Banach fixed point theorem to assert that there exists a unique element
ỹ ∈ C([0, 1]) such that Υ(ỹ) = ỹ.

Now with these notations and considerations, we are ready to state and prove
our main result.
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Theorem 3.1. Let u0 ∈ Σad be an optimal and let u ∈ Σad. For all λ ∈]0, 1], we
set

∆λ :=
yλ − y0

λ
·

Then the following assertions hold true

(1) ∆λ −→ ỹ in the space C([0, 1]) when λ −→ 0.

(2)
1
∫

0

(y0(x) − h(x))ỹ(x) dx ≥ 0. (This is the necessary optimality condition)

Proof. (1) Let ỹ be the unique fixed point of the map Υ, and set Hλ(x) :=
∆λ(x)− ỹ(x) for all λ ∈]0, 1] and all x ∈ [0, 1]. Then we can write Hλ = Aλ +Bλ,
where Aλ(x) and Bλ(x) are given for all x ∈ [0, 1] by

Aλ(x) =

1
∫

0

Gu0
(x, ξ)ỹ(ξ)θ′(y0(ξ)) dξ

−
1

λ

1
∫

0

(θ(yλ(ξ)) − θ(y0(ξ)))Gu0
(x, ξ) dξ, and

Bλ(x) = y0(x) +

1
∫

0

Gu(x, ξ)θ(y0(ξ)) dξ

−
1

λ

1
∫

0

(Guλ
(x, ξ) −Gu0

(x, ξ))θ(yλ(ξ)) dξ.

By the classical mean value theorem, for every ξ ∈ [0, 1] there exists a real number
ω(ξ, λ) ∈ (0, 1) such that

θ(yλ(ξ)) − θ(y0(ξ))

λ
= θ′

(

y0(ξ) + ω(ξ, λ)(yλ(ξ) − y0(ξ))
)yλ(ξ) − y0(ξ)

λ
.

Then we get

Aλ(x) =

1
∫

0

[

ỹ(ξ)θ′(y0(ξ)) −
θ(yλ(ξ)) − θ(y0(ξ))

λ

]

Gu0
(x, ξ) dξ

=

1
∫

0

Gu0
(x, ξ)

[

ỹ(ξ)θ′(y0(ξ)) − ∆λ(ξ)[θ′
(

y0(ξ) + ω(ξ, λ)(yλ(ξ) − y0(ξ))
)

]
]

dξ
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=

1
∫

0

Gu0
(x, ξ)

[

ỹ(x) − ∆λ(ξ)
]

θ′(y0(ξ) dξ

+

1
∫

0

Gu0
(x, ξ)∆λ(ξ)

(

θ′(y0(ξ)) − θ′(y0(ξ) + ω(ξ, λ)(yλ(ξ) − y0(ξ))
)

dξ.

The last equality implies the following estimation
∥

∥Aλ

∥

∥

C([0,1])
≤
lΩ

2

∥

∥∆λ − ỹ
∥

∥

C([0,1])

+
lbΩ

2 − lΩ

∥

∥u− u0

∥

∥

C([0,1])

1
∫

0

|θ′(y0(ξ)) − θ′[y0(ξ) + ω(ξ, λ)(yλ(ξ) − y0(ξ))]|dξ.

On the other hand, for all x, ξ ∈ [0, 1], we have

1

λ
(Guλ

(x, ξ) −Gu0
(x, ξ)) = Gu(x, ξ) −Gu0

(x, ξ).

Therefore, for Bλ(x) we have the espression

Bλ(x) =

1
∫

0

Gu(x, ξ)
[

θ(y0(ξ)) − θ(yλ(ξ))
]

dξ

+

1
∫

0

Gu0
(x, ξ)

[

θ(yλ(ξ)) − θ(y0(ξ))
]

dξ,

which yields the following inequality
∥

∥Bλ

∥

∥

C([0,1])
≤ lΩ

∥

∥yλ − y0

∥

∥

C([0,1])
.

Now, we reach the final conclusion. Indeed, from the estimates obtained above
we get the following inequality

(

1 −
lΩ

2

)
∥

∥∆λ − ỹ
∥

∥

C([0,1])
≤ lΩ

∥

∥yλ − y0

∥

∥

C([0,1])

+
lbΩ

2 − lΩ

∥

∥u− u0

∥

∥

C([0,1])

1
∫

0

|θ′(y0(ξ)) − θ′[y0(ξ) + ω(ξ, λ)(yλ(ξ) − y0(ξ))]|dξ.

This inequality implies that ∆λ converges to ỹ in the space C([0, 1]) when λ −→ 0.
Thus our claim (1) is proved.

(2) The optimality condition is easily obtained from assertion (1) and the
following inequality

0 ≤
j(uλ) − j(u0)

λ
= 2

1
∫

0

yλ − y0

λ
(y0 − h)dx+

1

λ

1
∫

0

(yλ − y0)
2dx,(12)
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which holds for all control u ∈ Σad, and all λ ∈]0, 1].

4. Illustrative examples

Example 4.1. We take θ identically equal to one on [0, a]. We take Σad :=
[ω,Ω], which means that we take constant controls on the interval [0, 1]. We take

b = k = l = 1. We let a to be any positive constant such that a ≥
Ω

2
· The

decision function h is taken to be an element of L2([0, 1]) satisfying

15

2
ω ≤

1
∫

0

h(x)ψ(x) dx ≤
15

2
Ω,

where ψ(x) = −
x2

2
+ x for all x ∈ [0, 1]. It is easy to see that all the conditions

and assumptions of our theory are satisfied. It is easy to see that for each control
u ∈ [ω,Ω], the solution of equation (1) is given by yu = uψ. Therefore, the cost
functional is given by

J (u) = Au2 − 2Bu+ C,

where

A =

1
∫

0

ψ(x)2 dx =
2

15
, B =

1
∫

0

h(x)ψ(x)dx, and C =

1
∫

0

h(x)2dx.

In this case, it is clear that the optimal control exists and is given by

u∗ =
15

2

1
∫

0

h(x)ψ(x)dx.

Let us determine this optimal control by using Theorem 3.1. Let u0 be an
optimal control of this problem. We know that u0 must satisfy condition (2) of
Theorem 3.1. For each λ ∈]0, 1[, we have ∆λ = (u − u0)ψ = ỹ. Therefore, we
must have

[u− u0]

1
∫

0

[yu0
(x) − h(x)]ψ(x) dx ≥ 0, ∀u ∈ [ω,Ω].(13)

(13) is equivalent to say that

[u− u0]
[

u0 −
B

A

]

≥ 0, ∀u ∈ [ω,Ω].

This inequality implies that

u0 =
B

A
=

15

2

1
∫

0

h(x)ψ(x) dx = u∗.



122 M. AKKOUCHI, A. BOUNABAT, AND M. GOEBEL

Thus our results help to determine the optimal control of this problem.

Example 4.2. We take θ identically equal to one on [0, a]. We take

Σad :=
{

uα,β : ω ≤ α ≤
Ω

2
, 0 ≤ β ≤

Ω

2

}

,

where uα,β(x) := α + βx for all x ∈ [0, 1]. It is clear that Σad is a compact
subset of C([0, 1]) contained in C1([0, 1]) and satisfying the Lipshitz condition

with k =
Ω

2
. We can take b = l = 1, and choose a positive constant a such that

Ω ≤ 3a. For each control u = uα,β, the corresponding state yu is given by

yu(x) = −
β

3
x3 +

(β − α)

2
x2 + αx,

and satisfies 0 ≤ yu(x) ≤ a for all x ∈ [0, 1]. In this case, our problem is to find

min
{

1
∫

0

[

−
β

3
x3 +

(β − α)

2
x2 + αx− h(x)

]2
dx : (α, β) ∈

[

ω,
Ω

2

]

×
[

0,
Ω

2

]

}

,

where h ∈ L2([0, 1]) is the decision function. To solve this problem, one can
use the gradient and find by classical methods the optimal controls. But we
shall try to use the necessary optimality condition found in our Theorem 3.1 in
order to determine the solutions of this optimal control problem. Our general
theory ensures the existence of optimal controls. So, let u0(x) = α0 + β0x be an
optimal control. An easy computation will show that for any u ∈ Σad the state
ỹ = ỹ(uα,β , u0) is given dor all x ∈ [0, 1] by

ỹ(x) = −(β − β0)
x3

3
+ (β − β0 + α0 − α)

x2

2
+ (α− α0)x.

This implies that ỹ = yu − yu0
. Then, by Theorem 3.1, the optimal control u0

satisfies
1

∫

0

[yu0
(x) − h(x)][yu(x) − yu0

(x)] dx ≥ 0, ∀u ∈ Σad.(14)

(i) Suppose that h takes its values in ] − ∞, 0]. Then necessarily we have
α0 = ω. Indeed, if α0 > ω, we consider the control uε(x) := α0 − ε+ β0x, (for all
x ∈ [0, 1]) with 0 < ε < α0 − ω. A short computation will show that

yuε(x) − yu0
(x) = εx

(x

2
− 1

)

≤ 0, for all x ∈ [0, 1].

By applying (14) to uε, we get

1
∫

0

x(x− 2)(yu0
(x) − h(x)) dx = 0.(15)

Since yu0
(x) − h(x) ≥ 0, we deduce from (15) that yu0

(x) = h(x) for all x ∈
]0, 1]. This will imply that yu0

vanishes on the whole interval ]0, 1]. This is a
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contradiction. Therefore, α0 = ω. Now, we shall prove that β0 = 0. Take any

β ∈
[

0,
Ω

2

]

, and consider the control uω,β(x) := ω + βx, (for all x ∈ [0, 1]). A

short computation will show that

yuω,β
(x) − yω,0(x) =

β

6
x2(3 − 2x) ≥ 0

for all x ∈ [0, 1]. Another computation will show that

J(uω,β) − J(uω,0) =
β

6

1
∫

0

x2(3 − 2x)[yuω,β
(x) + yuω,0

(x) − 2h(x)]dx ≥ 0.(16)

From (16) we deduce that uω,0 = ω is (the unique) optimal control.

(ii) Suppose that h takes its values in [a,∞[. Then necesarily we have α0 =
Ω

2
.

Indeed, if α0 <
Ω

2
, we consider the control uε(x) := α0+ε+β0x, (for all x ∈ [0, 1])

with 0 < ε <
Ω

2
− α0. A short computation will show that

yuε(x) − yu0
(x) = εx

(

1 −
x

2
) ≥ 0

for all x ∈ [0, 1]. By assumption, yu0
−h is negative on the interval [0, 1]. Therefore

an aplication of (14) to uε gives

1
∫

0

x(x− 2)(h(x) − yu0
(x)) dx = 0.(17)

Equality (17) implies that h(x) = yu0
(x) for all x ∈ [0, 1]. This is possible only

when h and u0 are identically zero, a contradiction. Therefore, we must have

α0 =
Ω

2
. Now, we shall prove that β0 =

Ω

2
. Take any β ∈

[

0,
Ω

2

]

, and consider

the control uβ(x) :=
Ω

2
+ βx, (for all x ∈ [0, 1]). A short computation will show

that

yuβ(x) − yuΩ
2

, Ω
2

(x) =
1

6

(

β −
Ω

2

)

x2(3 − 2x) ≤ 0

for all x ∈ [0, 1]. Another computation will show that

J(uβ) − J(uΩ

2
,Ω
2

) =
1

6

(

β −
Ω

2
)

1
∫

0

x2(3 − 2x)[yuβ (x) + yuΩ
2

, Ω
2

(x) − 2h(x)]dx ≥ 0.

(18)

From (18) we deduce that uΩ

2
,Ω
2

is (the unique) optimal control.

In all these examples, Theorem 3.1 helps to determine the optimal controls. It
is interesting to provide other examples where our theory should be applied.



124 M. AKKOUCHI, A. BOUNABAT, AND M. GOEBEL

References

[1] M. Akkouchi, A. Bounabat, and M. Goebel, Smooth and nonsmooth Lipschitz controls for a

class of nonlinear ordinary differential equations of second order, Optimization, to appear.
[2] F. Colonius and K. Kunisch, Stability for parameter estimation in two point boundary value

problems, J. Reine Angewandte Math. 370 (1986), 1-29.
[3] M. Goebel, Smooth and nonsmooth optimal Lipschitz control - a model problem, In Vari-

ational Calculus, Optimal Control and Applications, Edited by W. H. Schmidt et al.,
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