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ENTIRE EIGENFUNCTIONS OF THE LAPLACIAN

OF EXPONENTIAL TYPE WITH RESPECT TO

THE LIE NORM AND THE DUAL LIE NORM

KEIKO FUJITA

Abstract. We consider entire functions of exponential type with respect to
the Lie norm and the dual Lie norm. We characterize them by the growth
condition of harmonic components in their double series expansion. Special
attention will be paid to the eigenfunctions of the Laplacian.

Introduction

We consider the space of entire functions on Ẽ = Cn+1 and denote it by O(Ẽ).

Let F (z) =
∞
∑

k=0

Fk(z) ∈ O(Ẽ) be the homogeneous expansion of F , where Fk are

homogeneous polynomials of degree k. For a norm N(z) on Ẽ put

Exp (Ẽ; (r,N)) = {F ∈ O(Ẽ);∀r′ > r,∃C ≥ 0 s.t. |F (z)| ≤ CExp (r′N(z))}

and ‖F‖C(B̃N [1]) = sup{|F (z)|;N(z) ≤ 1}. Then we know that

F ∈ Exp (Ẽ; (r,N)) ⇐⇒ lim sup
k→∞

(k!‖Fk‖C(B̃N [1]))
1/k ≤ r.

An entire function can also be expanded into the double series with (k − 2l)-
homogeneous harmonic polynomials Fk,k−2l, k = 0, 1, . . . , l = 0, 1, . . . , [k/2];

F (z) =
∞

∑

k=0

Fk(z) =
∞

∑

k=0

[k/2]
∑

l=0

(z2)lFk,k−2l(z),

where the convergence is uniform on compact sets in Ẽ.

In this paper, we consider the case where the norm N(z) is the Lie norm L(z) or
the dual Lie norm L∗(z). First, we formulate, in terms of the growth behavior of
Fk,k−2l, the necessary and sufficient conditions for an entire function F to belong

to Exp (Ẽ; (r,N)). Here according to Iwahara [5] we will present the following
results with improved proofs:
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Let F (z) =
∞
∑

k=0

[k/2]
∑

l=0

(z2)lFk,k−2l(z). Then we have

F ∈ Exp (Ẽ; (r, L)) ⇐⇒ lim sup
k→∞

(k!‖Fk,k−2l‖S1
)1/k ≤ r,

F ∈ Exp (Ẽ; (r, L∗)) ⇐⇒ lim sup
k→∞

(l!(k − l)!‖Fk,k−2l‖S1
)1/k ≤ r/2,

where ‖F‖S1
= sup{|F (z)|; z ∈ S1} and S1 is the unit real sphere. (See Theorems

1.3 and 2.1.)

Second, we shall study the spaces of entire eigenfunctions of the Laplacian of
exponential type; Exp ∆−λ2(Ẽ; (r, L)) and Exp ∆−λ2(Ẽ; (r, L∗)). (See Section 5.)
Similar to a theorem of R. Wada (Theorem 5.3) and a theorem of A. Martineau
(Theorem 1.2) on the Fourier-Borel transformation F , we have the following
topological linear isomorphism:

F : O′(S̃∗
λ[r])

∼−→ Exp ∆−λ2(Ẽ; (r, L)), |λ| ≤ r < ∞,(0.1)

where O′(S̃∗
λ[r]) is the dual space of the space O(S̃∗

λ[r]) of germs of holomorphic

functions on S̃∗
λ[r] = {z ∈ Ẽ; z2 = λ2, L∗(z) ≤ r} (see Theorem 5.4).

Thanks to (0.1), we have the following relation which generalizes a result in
[11]:

Exp ∆−λ2(Ẽ; (r, L∗)) = Exp ∆−λ2

(

Ẽ;

(

r2 + |λ|2
2r

, L

))

, |λ| ≤ r.(0.2)

(See Theorem 5.5). These results were announced in [1].

The author would like to express her sincere gratitude to Professor Mitsuo
Morimoto for his useful advice.

1. Preliminary I

1.1. Entire functions of exponential type

Let N(z) be a norm on Ẽ = Cn+1. Its dual norm N∗(z) is defined by

N∗(z) = sup{|z · ζ|;N(ζ) ≤ 1}.
The open and the closed N -balls of radius r with center at 0 are defined by

B̃N (r) = {z ∈ Ẽ;N(z) < r}, r > 0, B̃N [r] = {z ∈ Ẽ;N(z) ≤ r}, r ≥ 0.

Note that B̃N (∞) = Ẽ. We denote by O(B̃N (r)) the space of holomorphic

functions on B̃N (r). Put O(B̃N [r]) = lim ind
r′>r

O(B̃N (r′)),

Exp (Ẽ; (r,N)) = {F ∈ O(Ẽ);∀r′ > r,∃C ≥ 0 s.t. |F (z)| ≤ C exp(r′N(z))},
Exp (Ẽ; [r,N ]) = {F ∈ O(Ẽ);∃r′ < r,∃C ≥ 0 s.t. |F (z)| ≤ C exp(r′N(z))}.

Note that for any norm N on Ẽ we have Exp (Ẽ; (0, N)) = Exp (Ẽ; (0)).
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We denote by Pk(Ẽ) the space of homogeneous polynomials of degree k. Define

the k-homogeneous component fk ∈ Pk(Ẽ) of f ∈ O({0}) by

fk(z) =
1

2πi

∫

|t|=ρ

f(tz)

tk+1
dt,(1.1)

where ρ is sufficiently small. Then we know the following theorem (see, for
example, [6]).

Theorem 1.1. Let N(z) be a norm on Ẽ and Fk ∈ Pk(Ẽ). Then we have

F =

∞
∑

k=0

Fk(z) ∈ Exp (Ẽ; (r,N)) ⇐⇒ lim sup
k→∞

(k!‖Fk‖C(B̃N [1]))
1/k ≤ r,

F =

∞
∑

k=0

Fk(z) ∈ Exp (Ẽ; [r,N ]) ⇐⇒ lim sup
k→∞

(k!‖Fk‖C(B̃N [1]))
1/k < r,

where ‖F‖C(B̃N [1]) = sup{|F (z)|;N(z) ≤ 1}.

We denote by X ′ the dual space of X; for example, O′(B̃N (r)) means the dual

space of O(B̃N (r)).

The Fourier-Borel transform FT of T ∈ O′(B̃N [r]) is defined by

FT (ζ) = 〈Tz, exp(z · ζ)〉.
We call the mapping F : T 7→ FT the Fourier-Borel transformation.

In [6], A.Martineau proved the following theorem.

Theorem 1.2. Let N(z) be a norm on Ẽ. The Fourier-Borel transformation F
establishes the following topological linear isomorphisms:

F : O′(B̃N [r])
∼−→ Exp (Ẽ; (r,N∗)), 0 ≤ r < ∞,

F : O′(B̃N (r))
∼−→ Exp (Ẽ; [r,N∗]), 0 < r ≤ ∞.

1.2. Double series expansion

We define the Lie norm L(z) of z ∈ Ẽ by

L(z) =

√

‖z‖2 +
√

‖z‖4 − |z2|2.(1.2)

Then we know that L(z) is the cross norm of the Euclidean norm ‖x‖; that is,

L(z) = inf







m
∑

j=1

|λj |‖xj‖; z =
m

∑

j=1

λjxj , λj ∈ C, xj ∈ Rn+1,m ∈ Z+







.

Thus putting ‖fk‖S1
= sup{|fk(x)|;x ∈ S1}, for fk ∈ Pk(Ẽ) we can see

‖fk‖C(B̃L[1]) = ‖fk‖S1
.
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Let Pk,n(t) be the Legendre polynomial of degree k and of dimension n + 1.

The harmonic extension P̃k,n(z,w) of Pk,n(z · w) is given by

P̃k,n(z,w) = (
√

z2)k(
√

w2)kPk,n

(

z√
z2

· w√
w2

)

·

Then P̃k,n(z,w) is a k-homogeneous harmonic polynomial in z and in w and
satisfies

|P̃k,n(z,w)| ≤ L(z)kL(w)k.(1.3)

We denote by Pk
∆(Ẽ) the space of homogeneous harmonic polynomials of degree

k. The dimension of Pk
∆(Ẽ) is known to be (2k +n−1)(k+n−2)!/(k!(n−1)!) ≡

N(k, n). For f ∈ O(B̃(r)), define the (k, j)-harmonic component of f by

fk,j(z) = N(j, n)

∫

S1

fk(τ)P̃j,n(z, τ)ḋτ ,(1.4)

where fk is the k-homogeneous component of f defined by (1.1) and ḋτ is the

normalized invariant measure on S1. Note that fk,j ∈ Pj
∆(Ẽ).

When N(z) = L(z), we omit the subscript; for example, we write B̃(r) for

B̃L(r). For a holomorphic function on B̃(r) we know the following theorem:

Theorem 1.3. ([8, Theorem 3.1]) Let f ∈ O(B̃(r)). Define the k-homogeneous

component of f as in (1.1) and define the (k, j)-harmonic component of f as in

(1.4). Then we can expand f into the double series:

f(z) =

∞
∑

k=0

fk(z) =

∞
∑

k=0

k
∑

j=0

(
√

z2)k−jfk,j(z) =

∞
∑

k=0

[k/2]
∑

l=0

(z2)lfk,k−2l(z),(1.5)

where the convergence is uniform on compact sets in B̃(r) and we have

lim sup
k→∞

(‖fk,k−2l‖S1
)1/k ≤ 1/r.(1.6)

Conversely, if we are given a double sequence {fk,k−2l} of homogeneous har-

monic polynomials fk,k−2l(z) satisfying (1.6), then the right-hand side of (1.5)

converges to a holomorphic function f uniformly on compact sets in B̃(r) and

the (k, k − 2l)-harmonic component of f is equal to the given fk,k−2l.

2. Exponential type with respect to the Lie norm

For an entire function of exponential type with respect to the Lie norm, we
have the following theorem:

Theorem 2.1. ([5, Theorem 3.7]) Let

F (z) =

∞
∑

k=0

[k/2]
∑

l=0

(z2)lFk,k−2l(z) ∈ O(Ẽ).
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Then we have

(i) F ∈ Exp (Ẽ; (r, L)) ⇐⇒ lim sup
k→∞

(k!‖Fk,k−2l‖S1
)1/k ≤ r,

(ii) F ∈ Exp (Ẽ; [r, L]) ⇐⇒ lim sup
k→∞

(k!‖Fk,k−2l‖S1
)1/k < r.

Proof. We prove only (i).

Let F (z) ∈ Exp (Ẽ; (r, L)). By the definition, for any r′ > r there exists a
constant C ≥ 0 such that |F (z)| ≤ C exp(r′L(z)). Then by (1.3), (1.1) and (1.4),
we have

|Fk,k−2l(z)| =

∣

∣

∣

∣

∣

∣

∣

N(k − 2l, n)

∫

S1

P̃k−2l,n(z, τ)
1

2πi

∫

|t|=ρ

F (tτ)

tk+1
dtḋτ

∣

∣

∣

∣

∣

∣

∣

≤ N(k − 2l, n)

2π

∫

S1

∫

|t|=ρ

∣

∣

∣

∣

P̃k−2l,n(z, τ)
F (tτ)

tk+1

∣

∣

∣

∣

dtḋτ

≤ C
N(k − 2l, n)

ρk
exp(r′ρ)L(z)k−2l.

Because this inequality holds for any ρ > 0, we have

|Fk,k−2l(z)| ≤ CN(k − 2l, n)

(

r′

k

)k

exp(k)L(z)k−2l

for k = 1, 2, · · · . By the Stirling formula, with another constant C ′ > 0,

|Fk,k−2l(z)| ≤ C ′N(k − 2l, n)
(r′)k

√
k

k!
L(z)k−2l.

Thus for k = 1, 2, · · · , and l = 0, 1, · · · , [k/2],

k!‖Fk,k−2l‖S1
≤ C ′N(k − 2l, n)

(

r′
)k √

k ≤ C ′N(k, n)
(

r′
)k √

k.

Therefore, we have

lim sup
k→∞

(k!‖Fk,k−2l‖S1
)1/k ≤ lim sup

k→∞

(

C ′N(k, n)
(

r′
)k √

k
)1/k

≤ r′.

Since r′ > r is arbitrary, we have

lim sup
k→∞

(k!‖Fk,k−2l‖S1
)1/k ≤ r.(2.1)

Conversely suppose that F ∈ O(Ẽ) satisfies (2.1). Then for any δ > 0 there
exists C ≥ 0 such that

‖Fk,k−2l‖S1
≤ C

rk(1 + δ)k

k!
·

Thus we have

|Fk,k−2l(z)| ≤ L(z)k−2l‖Fk,k−2l‖S1
≤ L(z)k−2lC

rk(1 + δ)k

k!
·
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Therefore, we have

|F (z)| =

∣

∣

∣

∣

∣

∣

∞
∑

k=0

[k/2]
∑

l=0

(z2)lFk,k−2l(z)

∣

∣

∣

∣

∣

∣

≤
∞

∑

k=0

[k/2]
∑

l=0

L(z)2lL(z)k−2lC
rk(1 + δ)k

k!

≤ C
∞
∑

k=0

L(z)k
rk(1 + δ)k([k/2] + 1)

k!
·

With another constant C ′ > 0 we have

|F (z)| ≤ C ′
∞
∑

k=0

L(z)krk(1 + 2δ)k

k!
= C ′ exp((1 + 2δ)rL(z)).

Since δ > 0 is arbitrary, F ∈ Exp (Ẽ; (r, L)).

3. Preliminary II

3.1. Lie sphere

The Shilov boundary of B̃[r] is the Lie sphere Σr:

Σr = {reiθω; 0 ≤ θ < 2π, ω ∈ S1} = {eiθω; 0 ≤ θ < 2π, ω ∈ Sr}.
Note that −xei(θ+π) = xeiθ and Σr = (R/(2πZ) × Sr)/ ∼, where ∼ is the

equivalence relation defined by (θ, x) ∼ (θ + π,−x), and that for f ∈ O(B̃[r]) we

have sup{|f(z)|; z ∈ B̃[r]} = sup{|f(z)|; z ∈ Σr}.
We define the invariant integral over Σr by

∫

Σr

f(z)ḋz =
1

2π

2π
∫

0

∫

S1

f(reiθω) ˙dωdθ.

For f, g ∈ O(B̃[r]), the integral
∫

Σr

f(z)g(z)ḋz is well-defined. Since

(f, g)Σr
≡

∫

Σr

f(z)g(z)ḋz =

∞
∑

k=0

r2k

∫

S1

fk(ω)gk(ω) ˙dω(3.1)

=

∞
∑

k=0

[k/2]
∑

l=0

r2k

∫

S1

fk,k−2l(ω)gk,k−2l(ω) ˙dω,

( , )Σr
is an inner product on O(B̃[r]). If f ∈ O(B̃[r]) and g ∈ O(B̃(r)) (resp.

f ∈ O(B̃(r)) and g ∈ O(B̃[r])), then for s > 1 sufficiently close to 1, the integral
∫

Σr

f(z/s)g(sz)ḋz (resp.

∫

Σr

f(sz)g(z/s)ḋz) is well-defined and does not depend on
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s by (3.1). Thus for f ∈ O(B̃[r]) and g ∈ O(B̃(r)) or for f ∈ O(B̃(r)) and

g ∈ O(B̃[r]) we write
∫

Σr

f(z/s)g(sz)ḋz = s.

∫

Σr

f(z)g(z)ḋz.

3.2. Cauchy-Hua transformation

The Cauchy-Hua kernel Hr(z,w) is defined by

Hr(z,w) = H1(z/r,w/r), H1(z,w) =
1

(1 − 2z · w + z2w2)(n+1)/2
·

Then Hr(z,w) is holomorphic on {(z,w) ∈ Ẽ × Ẽ;L(z)L(w) < r2}. Note that

Hr(z,w) = Hr(w, z) and H1(z,w) is expanded as follows;

H1(z,w) =

∞
∑

k=0

N(k, n + 2)(n + 1)

2k + n + 1
P̃k,n+2(z,w)

=
∞

∑

k=0

[k/2]
∑

l=0

N(k − 2l, n)(z2)l(w2)lP̃k−2l,n(z,w).

For f ∈ O(B̃(r)), we have the following integral representation:

f(z) = s.

∫

Σr

Hr(z,w)f(w) ˙dw.

(See, for example, Theorem 5.7 in [9].)

Let T ∈ O′(B̃[r]). If w ∈ B̃(r), then the mapping z 7→ Hr(z,w) belongs to

O(B̃[r]). Thus we can define the Cauchy-Hua transform CT of T by

CT (w) = 〈Tz,Hr(z,w)〉, w ∈ B̃(r).

We call the mapping C : T 7→ CT the Cauchy-Hua transformation.

Theorem 3.1. Let r > 0. The Cauchy-Hua transformation C establishes the

following topological antilinear isomorphisms :

C : O′(B̃[r])
∼−→ O(B̃(r)),

C : O′(B̃(r))
∼−→ O(B̃[r]).

Further, we have

〈T, g〉 = s.

∫

Σr

g(w)CT (w) ˙dw

for T ∈ O′(B̃[r]) and g ∈ O(B̃[r]) or for T ∈ O′(B̃(r)) and g ∈ O(B̃(r)), which

gives the inverse of C.
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(For a proof see, for example, Theorem 5.9 in [9].)

3.3. Fourier transformation

Composing the Fourier-Borel transformation F and the Cauchy-Hua transfor-
mation C on O′(B̃[r]), we can consider the Fourier transformation Q on O(B̃(r))

as Q = F ◦ C−1. Then by Theorems 3.1 and 1.2, for f ∈ O(B̃(r)) we have

Qf(ζ) = s.

∫

Σr

exp(z · ζ)f(z)ḋz.

By the definition of Q, Theorems 3.1 and 1.2 imply the following corollary.

Corollary 3.1. Let r > 0. The Fourier transformation Q establishes the follow-

ing topological antilinear isomorphisms:

Q : O(B̃(r))
∼−→ Exp (Ẽ; (r, L∗)),

Q : O(B̃[r])
∼−→ Exp (Ẽ; [r, L∗]).

Since we know the double series expansion of exponential function;

exp(z · w) =
∞
∑

k=0

[k/2]
∑

l=0

Γ((n + 1)/2)N(k − 2l, n)

2kl!Γ(k − l + (n + 1)/2)
(z2)l(w2)lP̃k−2l,n(z,w),

by simple calculation we can determine the image Qf of f ∈ O(B̃(r)), concretely
as follows.

Lemma 3.1. Let

f(z) =

∞
∑

k=0

fk(z) =

∞
∑

k=0

[k/2]
∑

l=0

(z2)lfk,k−2l(z) ∈ O(B̃(r)), fk,k−2l ∈ Pk−2l
∆ (Ẽ).

Then we have

Qf(ζ) =
∞
∑

k=0

[k/2]
∑

l=0

r2kΓ(n+1
2 )

2kl!Γ(k − l + n+1
2 )

(ζ2)lfk,k−2l(ζ),

where we write f(z) = f(z).

4. Exponential type with respect to the dual Lie norm

The dual Lie norm L∗(z) = sup{|z · w|;L(w) ≤ 1} is given by

L∗(z) =
√

(‖z‖2 + |z2|)/2.(4.1)

By (1.2) and (4.1) we have

L∗(z) =
1

2

(

L(z) +
|z2|
L(z)

)

(4.2)

and

L(z) = L∗(z) +
√

L∗(z)2 − |z2|.(4.3)
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Since |
√

z2| ≤ L∗(z) ≤ ‖z‖ ≤ L(z) ≤ 2L∗(z), we have

B̃L[r] ⊂ B̃L∗ [r] ⊂ B̃L[2r].

Because B̃L[r] and B̃L∗ [r] are convex sets, we have

O′(B̃L[r])⊂
6=
O′(B̃L∗ [r])⊂

6=
O′(B̃L[2r]).

Applying Theorem 1.2 we have

Exp (Ẽ; (r, L∗))⊂
6=

Exp (Ẽ; (r, L))⊂
6=

Exp (Ẽ; (2r, L∗)).(4.4)

Similar to Theorem 2.1, for the dual Lie norm L∗(z), we have the following
theorem:

Theorem 4.1. ([5, Theorem 5.2]) Let

F (z) =

∞
∑

k=0

[k/2]
∑

j=0

(z2)lFk,k−2l(z) ∈ O(Ẽ).

Then we have

(i) F ∈ Exp (Ẽ; (r, L∗)) ⇐⇒ lim sup
k→∞

(l!(k − l)!‖Fk,k−2l‖S1
)

1

k ≤ r/2,

(ii) F ∈ Exp (Ẽ; [r, L∗]) ⇐⇒ lim sup
k→∞

(l!(k − l)!‖Fk,k−2l‖S1
)

1

k < r/2.

Proof. We prove only (i). Let

F (ζ) =

∞
∑

k=0

[k/2]
∑

l=0

(ζ2)lFk,k−2l(ζ) ∈ Exp (Ẽ; (r, L∗)).

By Corollary 3.1, there exists f ∈ O(B̃(r)) such that F (ζ) = Qf(ζ) ∈ Exp (Ẽ; (r, L∗)).

By Lemma 3.1, for f(z) =
∞
∑

k=0

[k/2]
∑

l=0

(z2)lfk,k−2l(z), fk,k−2l ∈ Pk−2l
∆ (Ẽ), we have

F (ζ) =

∞
∑

k=0

[k/2]
∑

l=0

r2kΓ
(n + 1

2

)

2kl!Γ
(

k − l +
n + 1

2

)

(ζ2)lfk,k−2l(ζ).

Thus we have

Fk,k−2l(ζ) =
r2kΓ

(n + 1

2

)

2kl!Γ
(

k − l +
n + 1

2

)

fk,k−2l(ζ).

Since f ∈ O(B̃(r)), by Theorem 1.3, we have

lim sup
k→∞

(‖fk,k−2l‖S1
)1/k ≤ 1/r.
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Therefore, we have

lim sup
k→∞







l!Γ
(

k − l +
n + 1

2

)

Γ
(n + 1

2

)

‖Fk,k−2l‖S1







1/k

≤ r/2,

which is equivalent to

lim sup
k→∞

(l!(k − l)!‖Fk,k−2l‖S1
)

1

k ≤ r/2.(4.5)

Conversely, assume that a sequence {Fk,k−2l} of (k−2l)-homogeneous harmonic
polynomials satisfies (4.5). Then for any δ > 0 there exists C ≥ 0 such that

‖Fk,k−2l‖S1
≤ C

(1 + δ)krk

2kl!(k − l)!
.(4.6)

Put

fk,k−2l(z) =
2kl!Γ

(

k − l +
n + 1

2

)

r2kΓ
(n + 1

2

)

Fk,k−2l(z).(4.7)

Noting that lim
p→∞

(Γ(p + q)

Γ(p)

)1/p
= 1 for any constant q ∈ R, by (4.6), we have

lim sup
k→∞







2kl!Γ
(

k − l +
n + 1

2

)

Γ
(n + 1

2

)

rk

‖Fk,k−2l‖S1







1/k

≤ 1 + δ.

Since δ > 0 is arbitrary, we have lim sup
k→∞

(‖fk,k−2l‖S1
)1/k ≤ 1/r. Therefore, the

function f(z) =
∞
∑

k=0

[k/2]
∑

l=0

(z2)lfk,k−2l(z) belongs to O(B̃(r)) by Theorem 1.3, and

Qf(ζ) =
∞
∑

k=0

[k/2]
∑

l=0

(ζ2)lFk,k−2l(ζ) by Lemma 3.1 and (4.7). Further by Corollary

3.1, we have

F (ζ) =

∞
∑

k=0

[k/2]
∑

l=0

(ζ2)lFk,k−2l(ζ) ∈ Exp (Ẽ; (r, L∗)).

Similarly, we can characterize holomorphic functions on the dual Lie ball (see
[2] and [4]).
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5. Entire eigenfunctions of the Laplacian

Let λ be a complex number. We denote the space of eigenfunctions of the
Laplacian by O∆−λ2(B̃(r)) = {f ∈ O(B̃(r)); (∆z −λ2)f(z) = 0}, where ∆z is the

complex Laplacian: ∆z =
∂2

∂z2
1

+
∂2

∂z2
2

+ · · · + ∂2

∂z2
n+1

.

Lemma 5.1. ([12, Theorem 2.1]) Let f ∈ O(B̃(r)) and fk,k−2l be the (k, k− 2l)-
harmonic component of f defined by (1.4). Then we have

f ∈ O∆−λ2(B̃(r)) ⇐⇒ fk,k−2l =
(λ/2)2lΓ

(

k − 2l +
n + 1

2

)

Γ(l + 1)Γ
(

k − l +
n + 1

2

)

fk−2l,k−2l

for l = 0, 1, 2, · · · , [k/2] and k = 0, 1, 2, · · · .

If f ∈ O∆−λ2(B̃(r)), by Lemma 5.1 the double series (1.5) reduces to

f(z) =

∞
∑

k=0

[k/2]
∑

l=0

(z2)lfk,k−2l(z) =

∞
∑

k=0

j̃k(iλ
√

z2)fk,k(z),

where j̃k(t) is the entire Bessel function:

j̃k(t) = J̃k+(n−1)/2(t) = Γ(k + (n + 1)/2)(t/2)−(k+ n−1

2
)Jk+ n−1

2

(t).

Then the (k, k)-harmonic component of f ∈ O∆−λ2(B̃(r)) is given by

fk,k(z) = (j̃k(iλ))−1N(k, n)

∫

S1

P̃k,n(z, τ)f(τ)ḋτ .

Note that the k-homogeneous component fk of f is fk(z) = j̃k(iλ)fk,k(z) and

that lim sup
k→∞

|fk|1/k = lim sup
k→∞

|j̃k(iλ)fk,k|1/k because lim
µ→∞

|J̃µ(t)| = 1 for t ∈ C.

For a norm on N(z) on Ẽ, we put

Exp ∆−λ2(Ẽ; (r,N)) = Exp (Ẽ; (r,N)) ∩O∆−λ2(Ẽ).

We have the following theorem:

Theorem 5.1. ([12, Theorem 2.1]) Let

F (z) =
∞
∑

k=0

j̃k(iλ
√

z2)Fk,k(z) ∈ O∆−λ2(Ẽ).

Then we have

F ∈ Exp ∆−λ2(Ẽ; (r, L∗)) ⇐⇒ lim sup
k→∞

(k!‖Fk,k‖S1
)1/k ≤ r

2
.
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We define the complex sphere S̃λ of complex radius λ with center at 0 by

S̃λ = {z ∈ Ẽ; z2 = λ2}.
Put

S̃λ(r) = S̃λ ∩ B̃(r), |λ| < r, S̃λ[r] = S̃λ ∩ B̃[r], |λ| ≤ r.

Define the k-spherical harmonic component fk of f ∈ O(S̃λ(r)) by

fk(z) = N(k, n)

∫

S1

P̃k,n(z, τ)f(τ)ḋτ

and the k-spherical harmonic component Tk of T ∈ O′(S̃λ[r]) by

Tk(w) = N(k, n)〈Tz , P̃k,n(z,w)〉.
Then we have the following theorem:

Theorem 5.2. ([7, Theorems 5.1 and 6.1])

f =

∞
∑

k=0

fk ∈ O(S̃λ(r)) ⇐⇒ lim sup
k→∞

(‖fk‖S1
)1/k ≤ 1

r
,

T =

∞
∑

k=0

Tk ∈ O′(S̃λ[r]) ⇐⇒ lim sup
k→∞

(‖Tk‖S1
)1/k ≤ r.

Put

S̃∗
λ(r) = S̃λ ∩ B̃L∗(r), |λ| < r, S̃∗

λ[r] = S̃λ ∩ B̃L∗ [r], |λ| ≤ r.

By (4.2) and (4.3), we have S̃λ(r) = S̃∗
λ

(r2 + |λ|2
2r

)

and S̃∗
λ(r) = S̃λ(r+

√

r2 − |λ|2).
Thus we have the following corollary:

Corollary 5.1.

f =

∞
∑

k=0

fk ∈ O(S̃∗
λ(r)) ⇐⇒ lim sup

k→∞
(‖fk‖S1

)1/k ≤ 1

r +
√

r2 − |λ|2
,

T =

∞
∑

k=0

Tk ∈ O′(S̃∗
λ[r]) ⇐⇒ lim sup

k→∞
(‖Tk‖S1

)1/k ≤ r +
√

r2 − |λ|2 .

Restrict the Fourier-Borel transformation on O′(B̃N (r)) to O′(S̃λ ∩ B̃N (r)).
Then R.Wada proved the following theorem:

Theorem 5.3. ([10, Theorem 3.1]) The Fourier-Borel transformation F estab-

lishes the following topological linear isomorphisms:

F : O′(S̃λ[r])
∼−→ Exp ∆−λ2(Ẽ; (r, L∗)), 0 ≤ r < ∞,

F : O′(S̃λ(r))
∼−→ Exp ∆−λ2(Ẽ; [r, L∗]), 0 < r ≤ ∞.

To this theorem, in [3], we gave a proof different from R. Wada’s by using the
cohomology theory. By the same idea in [3] we can prove the following theorem:
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Theorem 5.4. The Fourier-Borel transformation F establishes the following topo-

logical linear isomorphisms:

F : O′(S̃∗
λ[r])

∼−→ Exp ∆−λ2(Ẽ; (r, L)), 0 ≤ r < ∞,

F : O′(S̃∗
λ(r))

∼−→ Exp ∆−λ2(Ẽ; [r, L]), 0 < r ≤ ∞.

By Theorems 5.3 and 5.4 we have the following theorem.

Theorem 5.5. For |λ| ≤ r, we have

Exp ∆−λ2(Ẽ; (r, L∗)) = Exp ∆−λ2

(

Ẽ;

(

r2 + |λ|2
2r

, L

))

or,

Exp ∆−λ2

(

Ẽ; (r, L)
)

= Exp ∆−λ2

(

Ẽ; (r +
√

r2 − |λ|2, L∗)
)

.

This generalizes a result in [11];

Exp ∆(Ẽ; (r, L∗)) = Exp ∆

(

Ẽ; (
r

2
, L)

)

, r ≥ 0.

Moreover, if |λ| = r, then Exp ∆−λ2

(

Ẽ; (r, L∗)
)

= Exp ∆−λ2

(

Ẽ; (r, L)
)

.

From Theorems 5.1 and 5.5 we have the following corollary.

Corollary 5.2. Let

F (z) =
∞

∑

k=0

j̃k(iλ
√

z2)Fk,k(z) ∈ Exp ∆−λ2(Ẽ; (r, L)), |λ| ≤ r.

Then we have

lim sup
k→∞

(k!‖Fk,k‖S1
)1/k ≤ r +

√

r2 − |λ|2
2

.

Conversely, if we are given a sequence {Fk,k} of k-homogeneous harmonic poly-

nomials Fk,k(z) satisfying

lim sup
k→∞

(k!‖Fk,k‖S1
)1/k ≤ r,

then
∞
∑

k=0

j̃k(iλ
√

z2)Fk,k(z) converges to F ∈ Exp ∆−λ2

(

Ẽ; (r +
|λ|2
4r

, L)

)

and the

(k, k)-harmonic component of F is equal to the given Fk,k.
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