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A CLASS OF MINIMAX PROBLEMS

SOLVABLE IN POLYNOMIAL TIME

TRAN VU THIEU AND TRAN THI HUE

Abstract. We develop a polynomial-time algorithm for solving a class of 0-1
production-transportation problems. The objective function is the maximum
of n monotonic functions of the production volume. The transportation cost
is assumed to be small as compared to the production cost and is omitted.
The proposed algorithm is based on a labeling technique for improving feasible
solutions.

1. Introduction

Given an m × n matrix A = (aij)m×n, where aij ∈ {0, 1}, and given positive
integer numbers pi (0 < pi ≤ n), i = 1, 2, . . . ,m, we consider the following
optimization problem

(P) f(x) ≡ max
1≤j≤n

fj(yj) −→ min(1)

subject to
m

∑

i=1

xij = yj, j ∈ N ≡ {1, 2, . . . , n},(2)

n
∑

j=1

xij = pi, i ∈M ≡ {1, 2, . . . ,m},(3)

xij ∈{0, 1} and xij ≤ aij for all i ∈M and j ∈ N,(4)

where for each j ∈ N , fj(yj) is a univariate function satisfying

fj(y) ≤ fj(y
′) for all y, y′ ∈ {0, 1, . . . ,m}, y ≤ y′.(5)

For instance, condition (5) holds if fj is of the form

fj(y) =

{

0 if y = 0,

cjy + dj if y > 0,
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where cj , dj are given positive numbers.

Problem (P) has some applications in scheduling theory and was studied in
[2], [6], [8] for the case fj(y) ≡ y for all j ∈ N . A polynomial-time algorithm
is described in [6], which reduces problem (P) with fj(y) ≡ y to solving a finite
number of maximum flow problems. Its running time is O(log2 n×OMF ), where
OMF is the running time of any polynomial-time maximum flow algorithm. For
instance, for Edmonds-Karp’s (1969) algorithm, OMF is O(pq2) and for Dinic’s
(1970) algorithm it is O(p2q), where p is the number of nodes and q the number
of arcs in the network (see [1], [3] for more details). Another class of minimax
problems has also been investigated in [7]. To our knowledge, a number of other
polynomial-time algorithms for various versions of the convex cost flow problem
have been developed, including those of Minoux [4] and [5].

The purpose of this paper is to show that the algorithm developed in [2] for
the case fj(y) ≡ y for all j ∈ N can be modified to solve (P) with fj satisfying
(5). Basically, the proposed method proceeds according to the same scheme as
that presented in [2] with, however, a major improvement in the definition of the
full and deficient columns and in the proofs of the main propositions. Moreover,
the present method can also be directly applied to problems with fj being either
increasing or decreasing in [0,m].

2. Main results

As usual a matrix x = {xij} whose entries satisfy (3) and (4) is called a
feasible solution of (P), a feasible solution achieving the minimum of (1) is called
an optimal solution of (P).

Let

ai =
n

∑

j=1

aij, i ∈M, bj =
m

∑

i=1

aij, j ∈ N, p =
m

∑

i=1

pi > 0.

As has been proved in [6], a necessary and sufficient condition for the existence
of an optimal solution of (P) is that

ai ≥ pi for all i ∈M.(6)

Condition (6) is very simple and easy to check. So, in the sequel we assume
that (P) satisfies this condition. It is also natural to suppose that bj > 0 for all
j ∈ N .

Since yj defined by (2) is integral and

0 ≤ yj =

m
∑

i=1

xij ≤

m
∑

i=1

aij = bj, j ∈ N,

all the function values fj(yj) can be listed as

f1(0), f1(1), . . . , f1(b1), f2(0), f2(1), . . . , f2(b2), . . . , fn(0), fn(1), . . . , fn(bn).(7)

Let f1 = max{fj(0) : j ∈ N}. Suppose that there are q distinct values in
(7) which are greater than or equal to f1 and these values are arranged in the
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increasing order as

f1 < f2 < · · · < fq = max{fj(bj) : j ∈ N}.(8)

We first observe that the optimal function value of (P), say f∗, is one of the q
values in (8).

For the sake of convenience, we associate with each feasible solution x = {xij}
of (P) a table consisting of m rows and n columns. The cell at the intersection
of row i and column j is denoted by (i, j). Then, x = {xij} will correspond to a
table consisting of zeros and ones in its cells. A cell (i, j) is called black if aij = 0
(xij = 0 for all black cells (i, j)). The remaining cells will be divided into two
categories: white cells if xij = 0 and blue cells if xij = 1.

Remark 1. A feasible solution of (P) satisfying (6) can be obtained as follows.
For each row i, from 1 to m, we write 1 in the non black cells of the row from
left to right until a total of pi ones have been assigned, then we write 0 in the
remaining cells of the row.

Consider now a feasible solution x = {xij} of (P). According to (2) we have

n
∑

j=1

yj =
n

∑

j=1

m
∑

i=1

xij =
m

∑

i=1

n
∑

j=1

xij =
m

∑

i=1

pi = p.(9)

Column j is called full if fj(yj) = f(x) and deficient if yj +1 ≤ bj and fj(yj +1) <
f(x). The degree of column j with respect to x, denoted by ρj(x), is defined to
be the number of integers i such that 0 ≤ i ≤ yj and fj(i) = f(x). Obviously,
0 ≤ ρj(x) ≤ bj + 1 for all j ∈ N, and ρj(x) ≥ 1 if column j is full and ρj(x) = 0
otherwise. We define ρ(x) to be

∑

j∈N

ρj(x) and call ρ(x) the degree of x. Clearly,

ρ(x) ≥ 1 for every feasible solution x, as at least one full column exists. It should
be noted that the notions of blue cells, white cells, full columns, deficient columns
and degree of a column relate to a given feasible solution.

The following proposition gives a simple criterion for an optimal solution of
(P).

Proposition 1. Let x be a feasible solution of (P). If x has no deficient column,
then x is optimal.

Proof. Assume to the contrary that there exists a feasible solution x′ of (P) better
than x, i.e. such that

f(x′) = max
j∈N

fj(y
′
j) < f(x) = max

j∈N
fj(yj) = fj0(yj0) for some j0 ∈ N,(10)

where yj and y′j are defined by (2) with respect to x and x′, respectively. From

(10) we have fj0(y
′
j0

) < fj0(yj0). It follows from (5) that y′j0 < yj0. Since
n
∑

j=1

yj =
n
∑

j=1

y′j = p by (9), there exists j1 ∈ N \ {j0} such that yj1 < y′j1 ≤ bj1,

which implies yj1 + 1 ≤ y′j1 ≤ bj1, as yj1 and y′j1 are integral. Also, from (5)

fj1(yj1 + 1) ≤ fj1(y
′
j1

) ≤ f(x′) < f(x),
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and so column j1 is deficient, contrary to the assumption.

Let S be an alternating chain of white and blue cells with respect to x joining
column j0 to column jk of the form

S = {(i0, j0), (i0, j1), . . . , (ik−1, jk−1), (ik−1, jk)}, (k ≥ 1),(11)

where (it, jt), t = 0, 1, . . . , k − 1, are white cells (xitjt
= 0), while (it, jt+1),

t = 0, 1, . . . , k − 1, blue cells (xitjt+1
= 1). Here all the row indices i0, . . . , ik−1

and all the column indices j0, . . . , jk are distinct. Let us introduce the following
transformation of x in such a chain.

Transformation A. Change every white cell in the chain to blue one and every
blue cell to white one. That is, we set

x′
itjt

= 1, x′
itjt+1

= 0, t = 0, 1, . . . , k − 1, x′
ij = xij , ∀(i, j) /∈ S.

Since in each of the rows it (t = 0, 1, . . . , k−1) there are just one white cell and
one blue cell of S, x′ = {x′

ij} satisfies (3), (4), i.e. x′ is also a feasible solution of

(P).

Proposition 2. Let x be a feasible solution of (P). If there exists an alternating
chain of white and blue cells joining a deficient column to a full column, then x
can be changed to a new feasible solution x′ which is either better or has smaller
degree than x.

Proof. Let S be a chain of the form (11) joining a deficient column j0 to a full
column jk. Applying Transformation A in S yields a new feasible solution x′.
Let yj and y′j be defined by (2) with respect to x and x′ respectively. Since in

each of the columns jt (t = 1, 2, . . . , k − 1) there are just one white cell and one
blue cell of S, we have

y′j = yj, for all j ∈ N \ {j0, jk}.(12)

On the other hand, as column j0 has only one cell of S (white cell (i0, j0)), it
is clear that

y′j0 = yj0 + 1,(13)

and as column jk has only one cell of S (blue cell (ik−1, jk)), it is clear that

y′jk
= yjk

− 1.(14)

As column j0 is deficient, from (12)-(14) it follows that if ρ(x) = 1 (equivalently,
if jk is a unique full column with respect to x and ρjk

(x) = 1), then we have










fj(y
′
j) = fj(yj) < f(x) for all j ∈ N\{j0, jk},

fj0(y
′
j0

) = fj0(yj0 + 1) < f(x),

fjk
(y′jk

) = fjk
(yjk
− 1) < fjk

(yjk
) = f(x).

This shows that x′ is better than the current solution x. In the opposite case, we
have f(x′) = f(x), i.e. x′ is no worse than x, but x′ has a lower degree than x
(as ρjk

(x′) = ρjk
(x)− 1 and ρj(x

′) = ρj(x) for all j ∈ N \ {jk}).
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We have another criterion for optimality.

Proposition 3. Let x be a feasible solution of (P). If there is no alternating
chain of white and blue cells joining a deficient column to a full column, then x
is an optimal solution of (P).

Proof. Suppose to the contrary that there is a feasible solution x′ = {x′
ij} of (P)

better than x = {xij}, i.e.

f(x′) = max
j∈N

fj(y
′
j) < f(x) = max

j∈N
fj(yj) = fj0(yj0) for some j0 ∈ N,(15)

where yj, y′j are defined by (2) with respect to x and x′ respectively. We show

that this leads to a contradiction. Indeed, from (15) we have fj0(y
′
j0

) < fj0(yj0).

It follows from (5) that y′j0 < yj0. Hence, by (2) there exists one row i0 ∈ N such

that x′
i0j0

= 0, xi0j0 = 1 (i.e. (i0, j0) is a blue cell with respect to x). Moreover,

as both x and x′ satisfy (3) with i = i0, there is one column j1 ∈ N \ {j0} such
that x′

i0j1
= 1, xi0j1 = 0 (i.e. (i0, j1) is a white cell with respect to x). If we

still have yj1 ≥ y′j1, there exists i1 ∈ M \ {i0} such that x′
i1j1

= 0, xi1j1 = 1 (i.e.

(i1, j1) is a blue cell with respect to x), and also by (3) there must be one column
j2 ∈ N \ {j1} such that x′

i1j2
= 1, xi1j2 = 0 (i.e. (i1, j2) is a white cell with

respect to x). If j2 6= j0, we continue this process until either of the following
cases occurs.

Case A. A column jr ∈ N \ {j0, . . . , jr−1} with yjr
< y′jr

is reached. This gives

yjr
+ 1 ≤ y′jr

≤ bjr
, as yjr

and y′jr
are integral. Also, from (5) fjr

(yjr
+ 1) ≤

fjr
(y′jr

) ≤ f(x′) < f(x), and so column jr is deficient. Thus, in this case we
obtain an alternating chain of white and blue cells of the form

(ir−1, jr), (ir−1, jr−1), . . . , (i0, j1), (i0, j0), (r ≥ 1)

that joins the deficient column jr to the full column j0, contrary to the hypothesis
of the proposition.

Case B. We obtain a cycle of cells of the form

C = {(is, js), (is, js+1), . . . , (it, jt), (it, js), (is, js)},

(0 ≤ s < t, t ≥ 1) or

C = {(is, js+1), (is+1, js+1), . . . , (it−1, jt), (is, jt), (is, js+1)},

(0 ≤ s < t, t ≥ 2),

where x′
iuju

= 0, x′
iu−1ju

= 1 (s ≤ u ≤ t), x′
itjs

= 1 or x′
isjt

= 0. Setting

x̄iuju
= 1, x̄iu−1ju

= 0 (s ≤ u ≤ t), x̄itjs
= 0 or

x̄isjt
= 1, x̄ij = x′

ij , ∀(i, j) /∈ C,

we get a new feasible solution x̄ with f(x̄) = f(x′) (because ȳj =
m
∑

i=1

x̄ij = y′j for

all j ∈ N).
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If x̄ still differs from x, the above process will be repeated with x′ replaced by x̄.
As the number of components of x̄ different from the corresponding components
of x decreases by at least four units when Case B occurs, after a finite number
of repetitions we must have x̂ = x and, at the same time, f(x̂) = f(x′), i.e.
f(x) = f(x̂) = f(x′), which contradicts (15).

One question now to elucidate is whether there exists an alternating chain of
white and blue cells joining a deficient column to a full column, as mentioned
in Propositions 2 and 3. In answer to this question, we consider the following
procedure for rows and columns labeling.

The rows and columns labeling procedure. First of all, we assign label 0 to each
column j which is full (fj(yj) = f(x)). If column j is labeled, we assign label
j to each row i which has not yet been labeled and has xij = 1 ((i, j) is a blue
cell). Then, if row i is labeled, we assign label i to each column j which has not
yet been labeled and has aij − xij = 1 (this is equivalent to aij = 1, xij = 0, i.e.
(i, j) is a white cell) and so on. The above procedure must stop after at most
m + n labelings.

Proposition 4. An alternating chain of white and blue cells joining a deficient
column to a full column exists if and only if there is at least one deficient column
that is labeled.

Proof. Suppose there exists a chain of the form (11) joining deficient column j0

to full column jk. We claim that j0 will be labeled using the above labeling
procedure. Indeed, if column j0 is not labeled row i0 cannot be labeled either, as
(i0, j0) is a white cell. Then j1 cannot be labeled either as (i0, j1) is a blue cell,
and so on. In the end, jk cannot be labeled, contrary to the fact that full column
jk was first assigned label 0.

Turning to the proof of sufficiency, suppose that a deficient column, say j0,
is assigned label i0 ((i0, j0) is a white cell) and row i0 is assigned label j1 6= j0

((i0, j1) is a blue cell). Let column j1 be assigned a label not equal to 0, for
instance, i1 6= i0 ((i1, j1) is a white cell), and row i1 be assigned label j2 6= j0, j1

((i1, j2) is a blue cell). If column j2 is assigned a label not equal to 0, we continue
searching. As the number of columns is finite (equal to n), eventually we must
determine a column jk 6= jt, t = 0, 1, . . . , k − 1, assigned label 0, i.e. jk is a full
column, and the required chain is

S = {(i0, j0), (i0, j1), . . . , (ik−1, jk−1), (ik−1, jk)}, (k ≥ 1),

where (it, jt), t = 0, 1, . . . , k−1, are white cells, while (it, jt+1), t = 0, 1, . . . , k−1,
are blue cells.

3. The polynomial time algorithm for (P)

From the above results we are now in a position to derive an algorithm for
solving (P). The algorithm consists of the following steps.
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Step 1 (Initialization). Find an initial feasible solution x1 of (P) (see Remark 1).
Set k = 1 and go to Step 2.

Step 2 (Test for optimality). Determine the full columns and the deficient columns
with respect to xk. If no deficient column exists, xk is an optimal solution of
(P) (by Proposition 1). Otherwise, perform the rows and columns labeling as
described in Section 2. If there is no deficient column that is labeled then xk is
also optimal (by Propositions 3 and 4). If a deficient column is labeled, a chain
of the form (11) is discovered, joining a deficient column to a full column (by
Proposition 4). Go to Step 3.

Step 3 (Solution improvement). By applying Transformation A in the chain found
in Step 2, obtain a new feasible solution x′ which is better or has a lower degree
than xk (by Proposition 2). Set xk+1 = x′ and k ← k + 1, then return to Step 2.

Proposition 5. The above algorithm terminates after a finite number of steps.

Proof. After each improvement in Step 3, either a better feasible solution or a
solution with a lower degree than the previous one is obtained. Since the objective
function of the problem can take on only a finite number of values (see (7), (8))
while the degree of each feasible solution of the problem is positive and bounded
by m× n, the algorithm cannot be infinite.

Complexity of the algorithm. In order to bound the running time of the algo-
rithm, we evaluate the number of arithmetic operations needed in each step of
the algorithm in the worst case.

Step 1. An initial feasible solution and the corresponding values y1
j (j ∈ N) can

be computed in O(m× n) arithmetic operations.

Step 2. As shown in (12)-(14), the time needed to update yk
j (j ∈ N) and f(xk)

is at most O(m + n). Determining the full columns and the deficient columns
requires O(n) arithmetic operations. Row and column labeling can be performed
in O(m×n) arithmetic operations. The operation of searching for an alternating
chain of white and blue cells joining a deficient column to a full column requires
O(m + n) arithmetic operations (using labels assigned to the rows and columns).
In all, Step 2 requires O(m× n) arithmetic operations in the worst case.

Step 3. The solution improvement in a chain obtained in Step 2 requires O(m+n)
arithmetic operations, because there are at most (m + n) cells in such a chain.

Steps 2 and 3 are repeated several times. After each repetition either the
objective value or the degree of the current feasible solution is reduced. Since the
objective function (1) can take on at most m× n different values and the degree
of a feasible solution is bounded by m× n, the number of repetitions is bounded
by O(m2 × n2). Consequently, the algorithm requires O((m × n)(m2 × n2)) or
O(m3n3) arithmetic operations.

As for the time needed to compute the function values fj, after having x1 we
need 2n evaluations of fj to obtain fj(y

1
j ) and fj(y

1
j +1) for all j ∈ N . In order to
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perform Step 2 we have to compute only two new function values fj0(yj0 +2) and
fjk

(yjk
− 1). Since Step 2 is repeated at most O(m2n2) times, the total number

of evaluations of fj is about O(m2n2).

We have thus established the following result.

Proposition 6. Problem (P) can be solved in O(m3n3) arithmetic operations
and O(m2n2) evaluations of the function fj.

Assuming that an evaluation of the function fj can be done in a unit time, the
running time of the algorithm is O(m3n3). When m ≈ n it is O(n6).

Example. Solve problem (P) with m = 4, n = 5, p1 = 2, p2 = 3, p3 = 3, p4 = 2
and

A =









1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
1 1 1 0 0









.

The functions fj(.) are given by

f1(y) = −1.2 + 0.6y, f2(y) = 1.8 + 0.2y, f3(y) = −0.5 + 0.8y,

f4(y) = 1.5 + 0.4y, f5(y) = 1.3 + 0.7y.

Summing up the elements of A in each row and each column yields

a1 = a2 = a3 = 4, a4 = 3; b1 = b2 = b3 = b4 = b5 = 3 and p = 10.

Step1. Since 0 ≤ yj ≤ bj = 3 for all j = 1, . . . , 5, we have






























k = 0 1 2 3
f1(k) = −1.2 −0.6 0.0 0.6
f2(k) = 1.8 2.0 2.2 2.4
f3(k) = −0.5 0.3 1.1 1.9
f4(k) = 1.5 1.9 2.3 2.7
f5(k) = 1.3 2.0 2.7 3.4

At the completion of Step 1 of the algorithm, we obtain an initial feasible
solution of (P)

x1 =









1 1 × 0 0
1 × 1 1 0
× 1 1 1 0
1 1 0 × ×









2

2
2

0 1 1

(black cells are marked by ×, the last column indicates the labels assigned to the
rows and the last row the labels assigned to the columns).

Step 2. Summing up the elements in each column of x1 yields

y1
1 = y1

2 = 3, y1
3 = y1

4 = 2, y1
5 = 0,

f1 = max{0.6, 2.4, 1.1, 2.3, 1.3} = 2.4.
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Column 2 is full. Columns 3, 5 are deficient. Column 2 is first labeled with a
0. We search column 2 in x1 for a 1 (blue cell) and find it in rows 1, 3, 4, so these
rows are labeled with a 2 (subscript of column 2). We now search labeled row
1 for a 0 (white cell) and find it in columns 4 and 5 (not yet labeled), so these
columns are labeled with a 1 (subscript of row 1). At this point, deficient column
5 is labeled with a 1 (row 1), row 1 is labeled with a 2 (column 2). Column 2 is
full. Thus, we obtain the chain of cells: (1,5)-(1,2) joining deficient column 5 to
full column 2.

Step 3. Changing x1 in the chain just found in Step 2 gives a new feasible solution

x2 =









1 0 × 0 1
1 × 1 1 0
× 1 1 1 0
1 1 0 × ×









5
4
4
2

1 4 0 2

First return to Step 2. Summing up the elements in each column of x2 yields

y2
1 = 3, y2

2 = y2
3 = y2

4 = 2, y2
5 = 1 and

f2 = max{0.6, 2.2, 1.1, 2.3, 2.0} = 2.3.

Column 4 is full. Column 3 is deficient. The labeling procedure now gives the
chain of cells: (4, 3)−(4, 2)−(1, 2)−(1, 5)−(2, 5)−(2, 4) joining deficient column
3 to full column 4.

Step 3. Changing x2 in this new chain gives a new feasible solution

x3 =









1 1 × 0 0
1 × 1 0 1
× 1 1 1 0
1 0 1 × ×









.

Second return to Step 2. Summing up the elements in each column of x3 yields

y3
1 = 3, y3

2 = 2, y3
3 = 3, y3

4 = y3
5 = 1 and

f3 = max{0.6, 2.2, 1.9, 1.9, 2.0} = 2.2.

Now column 2 is full, but there is no deficient column, so x3 (with 0 instead
of ×) is an optimal solution. The optimal function value is f∗ = f3 = 2.2.

Remark 2. Direct computation shows that one of the optimal continuous solu-
tions of (P) (0 ≤ xij ≤ 1) is

xopt =









1 0.42 0 0.46 0.12
1 0 1 0 1
0 1 1 1 0
1 0 1 0 0








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with the optimal value

fopt = max {f1(3), f2(1.42), f3(3), f4(1.46), f5(1.12)}

= max {0.6, 2.084, 1.9, 2.084, 2.084}

= 2.084 < f∗ = 2.2.

Remark 3. The above algorithm can also be extended to the case where fj is
either increasing or decreasing in [0,m]. The details are left to the reader.
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