BOUNDARY VALUE CONJUGATION PROBLEMS FOR ELLIPTIC EQUATIONS IN VARIABLE DOMAINS

HOANG QUOC TOAN

ABSTRACT. We study the behaviour of the solutions of boundary value conjugation problems for high order elliptic equations in variable domains (Ω_t, G'_t) $(0 < t \le 1)$ which depend smoothly on a parameter t in Krein's sense. Considering the domain (Ω_0, G'_0) as the limit of domains (Ω_t, G'_t) when t tends 0, we prove the existence and the uniqueness of the solution of the boundary value conjugation problem in (Ω_0, G'_0) .

1. Introduction

Let G_0 be a bounded domain in the space \mathbb{R}^n with sufficiently smooth boundary Γ_0 . Let Ω_0 be a domain contained in G_0 with sufficiently smooth boundary γ_0 such that

$$\overline{\Omega}_0 \subset G_0$$
.

We will study elliptic differential operators of order 2m with smooth coefficients $L_1(x,D)$ in Ω_0 and $L_2(x,D)$ in G_0 and systems of linear differential expressions with smooth coefficients in G_0 $\left\{B_i^1(x,D)\right\}$, $\left\{B_i^2(x,D)\right\}$ $(i=1,2,\ldots,2m)$ of order $m_i \leq 2m-1$, and $\left\{B_j^3(x,D)\right\}$ $(j=1,2,\ldots,m)$ of order $m_j^3 \leq 2m-1$.

Consider in the domain G_0 a family of domains $\{G_t\}$ whose boundaries $\{\Gamma_t\}$ depend on a parameter $t \in [0,1]$ and in the domain Ω_0 a family of domains $\{\Omega_t\}$ with boundaries $\{\gamma_t\}$ depending on the parameter t. In the sequel we suppose that the families $\{\Gamma_t\}$ and $\{\gamma_t\}$ depend smoothly on the parameter $t \in [0,1]$ in the Krein's sense (see [2] and [3]). Moreover, as t tends to 0,

$$(1.1) G_t \to G_0, \quad \Omega_t \to \Omega_0.$$

Therefore, when t is sufficiently small i.e. $t \in [0,T]$ for some T, 0 < T < 1, we have

(1.2)
$$\Omega_t \subset \Omega_0 \subset G_t,$$

$$\Omega_{t+\Delta t} \subset \Omega_t, \quad G_{t+\Delta t} \subset G_t \quad (0 < t < t + \Delta t < T).$$

Received November 29, 1995; in revised form August 14, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 35J65, 35J60.

Key words and phrases. Boundary value elliptic problems; Boundary value conjugation problems; Family of domains depend smooth on the parameter in the Krein's sense.

Let ω_1 , ω_2 be two domains in \mathbb{R}^n . Let

$$C^{\infty}(\omega_{1}, \omega_{2}) = \left\{ v = (v_{1}, v_{2}) : v_{1} \in C^{\infty}(\omega_{1}), v_{2} \in C^{\infty}(\omega_{2}) \right\},$$

$$H^{s}(\omega_{1}, \omega_{2}) = \left\{ v = (v_{1}, v_{2}) : v_{1} \in H^{s}(\omega_{1}), v_{2} \in H^{s}(\omega_{2}) \right\}, \quad s \geq 0,$$

$$\left\| v \right\|_{H^{s}(\omega_{1}, \omega_{2})}^{2} = \left\| v \right\|_{H^{s}(\omega_{1})}^{2} + \left\| v_{2} \right\|_{H^{s}(\omega_{2})}^{2}.$$

Set

$$G'_t = G_t \setminus \Omega_t, \quad \Delta G'_t = G'_t \setminus G'_{t+\Delta t}, \quad \Delta \Omega_t = \Omega_t \setminus \Omega_{t+\Delta_t},$$

where $t \in (0,T]$, $\Delta t > 0$. Applying the results obtained in [1], [2] and [3] we see that for all $\phi(x) \in C^{\infty}(\Delta\Omega_t, \Delta G'_t)$ which is equal to zero together with all its partial derivatives on the boundary (γ_t, Γ_t) or on $(\gamma_{t+\Delta t}, \Gamma_{t+\Delta t})$, the following estimate holds

(1.3)
$$\|\phi\|_{H^{s-1}(\Delta\Omega_t,\Delta G_t')} \le C|\Delta t| \|\phi\|_{H^s(\Delta\Omega_t,\Delta G_t')},$$

where $s \geq 1$ and C is a constant.

Let $u(x) \in H^s(\Omega_t, G'_t)$, where $s \geq 0$ and $t \in [0, 1]$. Then u(x) can be extended to a function $u_t(x) = R_t u(x) \in H^s(\Omega_0, G_0)$ by an operator of extension R_t . The operators of extension R_t can be chosen as linear operators from $H^s(\Omega_t, G'_t)$ to $H^s(\Omega_0, G_0)$, uniformly bounded in the norm for all $t \in [0, 1]$ and for $0 \leq s \leq N$, where N is a sufficiently large natural number such that the following estimate holds

for $0 \le s \le N$ and all $u \in H^s(\Omega_0, G_0)$. Here S_t are operators of restriction on $H^s(\Omega_t, G'_t)$ (see [1] and [2]).

Let $(x_0; n) = (x_0^1, x_0^2, \dots, x_0^{n-1}; n)$ be a system of local coordinates in a neighbourhood of the boundary Γ_t (respectively γ_t) for $t \in [0, 1]$. We assume that a boundary $\Gamma_{t+\Delta t}$ (respectively $\gamma_{t+\Delta t}$) with $|\Delta t|$ sufficiently small is defined by the equation $n = \chi(x_0; t, \Delta t), |\chi| \leq C \cdot |\Delta t|$, where $x_0 = (x_0^1, x_0^2, \dots, x_0^{n-1})$ is the local coordinate on Γ_t (respectively γ_t) (see [1], [2] and [3]). Let $A_{\Delta t}$ be an operator defined on $C^{\infty}(G_0)$ (respectively $C^{\infty}(\Omega_0)$) by the formula

$$(A_{\Delta t}\phi)(x_0;n) = \phi(x_0;\chi(x_0;t,\Delta t)) - \phi(x_0,0).$$

Then $A_{\Delta t}$ can be extended to a continuous operator from $H^{s-\frac{1}{2}+\alpha+1}(G_0)$ (respectively $H^{s-\frac{1}{2}+\alpha+1}(\Omega_0)$) to $H^{s-1+\alpha}(\Gamma_t)$ (respectively $H^{s-1+\alpha}(\gamma_t)$) for all $s \geq 1$, $0 \leq \alpha < 1$, and the following inequality holds

(1.6)
$$\|A_{\Delta t}\phi\|_{H^{s-1+\alpha}(\Gamma_t)} \le C \cdot |\Delta t| \|\phi\|_{H^{s-\frac{1}{2}+\alpha+1}(G_0)},$$

or, respectively,

$$||A_{\Delta t}\phi||_{H^{s-1+\alpha}(\gamma_t)} \le C|\Delta t| ||\phi||_{H^{s-\frac{1}{2}+\alpha+1}(\Omega_0)}.$$

Our aim in this paper is to study the boundary value conjugation problem in the domain (Ω_0, G'_0) . In Section 2 we consider the behaviour of the solutions u(t, x) of boundary value conjugation problems in variable domains (Ω_t, G'_t) , 0 < 0

t < 1, and obtain the asymptotic estimate for the solutions u(t,x) when $t \to 0$. In Section 3, we prove the existence and the uniqueness of the solution $u_0(x)$ of the boundary value conjugation problem in the domain (Ω_0, G'_0) as the limit (in some sense) when $t \to 0$ of the solutions u(t,x).

2. Conjugation problems in variable domains

For $t \in [0,T]$ we consider the following boundary value conjugation problem

(2.1)
$$L_{j}(x,D)u^{1}(x) = f_{1}(x) \quad \text{in } \Omega_{t},$$

$$L_{2}(x,D)u^{2}(x) = f_{2}(x) \quad \text{in } G'_{t} = G_{t} \setminus \Omega_{t},$$

$$[B_{i}(x,D)u(x)] = B_{i}^{1}(x,D)u^{1}(x) + B_{i}^{2}(x,D)u^{2}(x)$$

$$= g_{j}(x) \quad \text{on } \gamma_{t} \quad (i = 1, 2, ..., 2m),$$

$$B_{j}^{3}(x,D)u^{2}(x) = h_{j}(x) \quad \text{on } \Gamma_{t} \quad (j = 1, 2, ..., m),$$

where $f_1(x)$ is a function defined in Ω_0 , $f_2(x)$ is a function defined in G_0 and $g_i(x)$, $h_j(x)$ (i = 1, 2, ..., 2m; j = 1, 2, ..., m) are functions defined in \overline{G}_0 . Let

$$u(x) = (u^{1}(x), u^{2}(x))$$
 and $Lu = (L_{1}(x, D)u^{1}, L_{2}(x, D)u^{2}).$

We now state the essential asumptions for our latter proofs.

In the domain (Ω_t, G'_t) , $t \in (0, T]$, if the Sapiro-Lopatinsky condition (the coercive condition) for the problem (2.1)-(2.2) is satisfied, then the operator of the problem

$$P_s: u(x) \mapsto P_s u = \{Lu, [B_i u]_{\gamma_t}, B_j^3 u^2 |_{\Gamma_t}\}, \quad (i = 1, 2, \dots, 2m, \ j = 1, 2, \dots, m)$$

from
$$H^{2m+s}(\Omega_t, G'_t)$$
 to $H^s(\Omega_t, G'_t) \times \prod_{i=1}^{2m} H^{2m+s-m_i-\frac{1}{2}}(\gamma_t) \times \prod_{j=1}^m H^{2m+s-m_j^2-\frac{1}{2}}(\Gamma_t)$

is Noether in the appropriate spaces for all $s \geq 0$. In addition, the following a priori estimate holds

(2.3)
$$||u||_{H^{2m+s}(\Omega_t, G_t')} \le$$

$$C(t) \Big\{ \big\| Lu \big|_{H^{s}(\Omega_{t}, G'_{t})} + \sum_{i=1}^{2m} \big\| [B_{i}u] \big\|_{H^{2m+s-m_{i}-\frac{1}{2}}(\gamma_{t})} + \sum_{i=1}^{m} \big\| B_{j}^{3}u \big\|_{H^{2m+s-m_{j}^{3}-\frac{1}{2}}(\Gamma_{t})} \Big\},$$

for all $s \geq 0$ and all functions $u(x) \in H^{2m+s}(\Omega_t, G'_t)$, where C(t) is a function of $t \in [0, T]$. So it is easily seen that under this assumption the problem (2.1)-(2.2) has a unique solution. In the case where C(t) is a constant the problem (2.1)-(2.2) has been investigated by L. Ivanov [1]. The aim of this article is to study the behaviour of the solutions of boundary value conjugation problems in the variable domains (Ω_t, G'_t) , $0 < t \leq T$, under the assumption that the function C(t) in the a priori estimate (2.3) is unbounded as $t \to 0$ so that the asymptotic estimate

$$(2.4) C(t) = 0(t^{-\alpha}),$$

holds for some $0 \leq \alpha < 1$. It is necessary to remark that the behaviour of C(t) as $t \to 0$ depends completely on the behaviour of coefficients of the operators $L_1(x,D)$, $L_2(x,D)$ and the expressions $B_i^1(x,D)$, $B_i^2(x,D)$, $B_j^3(x,D)$ $(i=1,2,\ldots,2m;j=1,2,\ldots,m)$ in a neighbourhood of boundary (γ_0,Γ_0) . Moreover, the boundary value conjugation problem in (Ω_0,G_0') (for t=0) is considered as the limit (in some meaning) of the problem (2.1)-(2.2) in (Ω_t,G_t') when $t\to 0$. Therefore the problem in (Ω_0,G_0') can be called the boundary value conjugation problem in the limit domain. Furthermore, the results obtained in this paper may be seen as an extension of the ones obtained in [4], [5] and [6] on boundary value elliptic problems to the boundary value conjugation problem in variable domains.

Let $f_1(x) \in C^{\infty}(\overline{\Omega}_0)$, $f_2(x) \in C^{\infty}(\overline{G}_0)$. Then $f(x) \in C^{\infty}(\overline{\Omega}_0, \overline{G}_0)$ and $g_i(x) \in C^{\infty}(\overline{\Omega}_0)$, $h_j(x) \in C^{\infty}(\overline{G}_0)$ (i = 1, 2, ..., 2m; j = 1, 2, ..., m). We define u(t, x) to be the unique solution of problem (2.1)-(2.2), where $t \in (0, T]$. Then $u(t, x) \in C^{\infty}(\Omega_t, G'_t)$. Now put

$$u_t(t,x) = R_t u(t,x) = (R_t u^1(t,x), R_t u^2(t,x))$$

where R_t is the operator of extension defined in the introduction. Then $u_t(t,x) \in H^{2m+s}(\Omega_0, G_0)$, $2m + s \leq N$. Let $\Delta u_t = u_{t+\Delta t} - u_t$, $(\Delta t > 0)$. It is easily seen that

(2.5)
$$L_1 \Delta u_t^1 = \begin{cases} 0 & \text{if } x \in \overline{\Omega_t \cap \Omega_{t+\Delta t}} \\ L_1 u_{t+\Delta t}^1 - f_1 & \text{if } x \in \Delta \Omega_t \end{cases}$$
$$L_2 \Delta u_t^2 = \begin{cases} 0 & \text{if } x \in \overline{G'_t \cap G'_{t+\Delta t}} \\ L_2 u_{t+\Delta t}^2 - f_2 & \text{if } x \in \Delta G'_t \end{cases}$$

Then $L\Delta u_t = (L_1 \Delta u_t^1, L_2 \Delta u_t^2)$.

Using a similar approach as for Proposition 1 in [6], we get the following proposition.

Proposition 2.1. For $s \ge 1$ and $2m + s \le N$ the following estimate holds

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_t, G_t')} \leq C(t)C(t+\Delta t) \left\{ \left\| f \right\|_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} \left\| g_i \right\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \left\| h_j \right\|_{H^{2m+s-m_j^3}(G_0)} \right\},$$

where
$$C(t) = 0(t^{-\alpha})$$
 and $C(t + \Delta t) = 0((t + \Delta t)^{-\alpha})$.

Proof. Applying the a priori estimate (2.3) for $t \in (0,T]$ we have

$$(2.7) \quad \left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_t, G_t')} \leq C(t) \left\{ \left\| L \frac{\Delta u_t}{\Delta t} \right\|_{H^{s-1}(\Omega_t, G_t')} + \sum_{i=1}^{2m} \left\| \left[B_j \frac{\Delta u_t}{\Delta t} \right] \right\|_{H^{2m+s-1-m_i-\frac{1}{2}}(\gamma_t)} + \sum_{i=1}^{m} \left\| B_j^3 \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-1-m_j^3-\frac{1}{2}}(\Gamma_t)} \right\}.$$

We observe that the expression $L\frac{\Delta u_t}{\Delta t} = \frac{1}{\Delta t}L\Delta u_t$ defined by (2.5) is equal to zero together with all its partial derivatives on the boundary $(\gamma_{t+\Delta t}, \Gamma_{t+\Delta t})$. Applying the estimate (1.3), we have

(2.8)
$$\left\| L \frac{\Delta u_t}{\Delta t} \right\|_{H^{s-1}(\Omega_t, G'_t)} = \frac{1}{\Delta t} \left\| L \Delta u_t \right\|_{H^{s-1}(\Delta \Omega_t, \Delta G'_t)}$$

$$= \frac{1}{|\Delta t|} \left\| L u_{t+\Delta t} - f \right\|_{H^{s-1}(\Delta \Omega_t, \Delta G'_t)}$$

$$\leq C \left\| L u_{t+\Delta t} - f \right\|_{H^s(\Delta \Omega_t, \Delta G'_t)}$$

$$\leq C \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s}(\Omega_t, G'_t)} + \left\| f \right\|_{H^s(\Omega_t, G'_t)} \right\}.$$

Moreover, for the expressions $\left[B_j \frac{\Delta u_t}{\Delta t}\right]$ and $B_j^3 \frac{\Delta u_t}{\Delta t}$ we have

$$\left[B_i \frac{\Delta u_t}{\Delta t}\right] = \frac{1}{\Delta t} \left(\left[B_i u_{t+\Delta t}\right] - g_i \right) \Big|_{\gamma_t} = \frac{A_{\Delta t} g_i - A_{\Delta t} \left[B_i u_{t+\Delta t}\right]}{\Delta t},
B_j^3 \frac{\Delta u_t^2}{\Delta t} = \frac{1}{\Delta t} \left(B_j^3 u_{t+\Delta t}^2 - h_j \right) \Big|_{\Gamma_t} = \frac{A_{\Delta t} h_j - A_{\Delta t} \left[B_j^3 u_{t+\Delta t}^2\right]}{\Delta t}.$$

Then for $s \ge 1$, $2m + s \le N$, $2m + s - m_i - \frac{1}{2} - 1 > 0$, $2m + s - m_j^3 - \frac{1}{2} - 1 > 0$, applying inequality (1.6) we get that

$$(2.9) \quad \left\| \left[B_{t} \frac{\Delta u_{t}}{\Delta t} \right] \right\|_{H^{2m+s-m_{i}-1-\frac{1}{2}}(\gamma_{t})}$$

$$\leq \frac{1}{|\Delta t|} \left\{ \left\| A_{\Delta t} [B_{j} u_{t+\Delta t}] \right\|_{H^{2m+s-1-m_{i}-\frac{1}{2}}(\gamma_{t})} + \left\| A_{\Delta t} g_{i} \right\|_{H^{2m+s-1-m_{i}-\frac{1}{2}}(\gamma_{t})} \right\}$$

$$\leq C \left\{ \left\| \left[B_{i} u_{t+\Delta t} \right] \right\|_{H^{2m+s-m_{i}}(\Omega_{0},G_{0})} + \left\| g_{i} \right\|_{H^{2m+s-m_{i}}(\Omega_{0})} \right\}$$

$$\leq C \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s}(\Omega_{0},G_{0})} + \left\| g_{i} \right\|_{H^{2m+s-m_{i}}(\Omega_{0})} \right\}.$$

Similarly we have

$$\left\| B_{j}^{3} \frac{\Delta u_{t}^{2}}{\Delta t} \right\|_{H^{2m+s-m_{j}^{3}-1-\frac{1}{2}}(\Gamma_{t})} \leq C \left\{ \left\| u_{t+\Delta t}^{2} \right\|_{H^{2m+s}(G_{0})} + \left\| h_{j} \right\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \right\}$$

$$(2.10) \qquad \leq \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s}(\Omega_{0},G_{0})} + \left\| h_{j} \right\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \right\}.$$

After obtaining (2.8), (2.9) and (2.10) we return to (2.7) and get

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_t, G_t')} \le C(t) \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s}(\Omega_0, G_0)} + \sum_{i=1}^{2m} \left\| g_i \right\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \left\| h_j \right\|_{H^{2m+s-m_j^3}(G_0)} + \left\| f \right\|_{H^s(\Omega_t, G_t')} \right\}.$$

Using the uniform boundeness of operators R_t and applying the a priori estimate (2.3) to $\|u_{t+\Delta t}\|_{H^{2m+s}(\Omega_0,G_0)}$ we obtain (2.6).

The following corollary allows us to estimate $\frac{\Delta u_t}{\Delta t}$ in $H^{2m+s-1}(\Omega_0, G_0)$.

Corollary 2.1. For $s \ge 1$ the following estimate holds

$$\left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} \leq$$

$$C(t) \cdot C(t + \Delta t) \left\{ \left\| f \right\|_{H^{s}(\Omega_{0},G_{0})} + \sum_{i=1}^{2m} \left\| g_{i} \right\|_{H^{2m+s-m_{i}}(\Omega_{0})} + \sum_{j=1}^{m} \left\| h_{j} \right\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \right\},$$

$$where C(t) = 0(t^{-\alpha}) \text{ and } C(t + \Delta t) = 0((t + \Delta t)^{-\alpha}).$$

Proof. Putting $P_t = R_t S_t$, where R_t is the operator of extension and S_t is the operator of restriction introduced in the introduction, we have

$$\begin{split} & \left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} \\ & \leq \left\| P_{t} \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} + \left\| (I-P_{t}) \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} \\ & = \left\| P_{t} \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} + \left\| \frac{1}{\Delta t} (P_{t+\Delta t} - P_{t}) u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} \\ & \leq C \left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{t},G'_{t})} + \frac{1}{|\Delta t|} \left\| (P_{t+\Delta t} - P_{t}) u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})}. \end{split}$$

Applying the inequalities (1.4), (2.6) and (2.3) successively we obtain

$$\begin{split} \left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{0},G_{0})} &\leq C \left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-1}(\Omega_{t},G'_{t})} + \left\| u_{t+\Delta t} \right\|_{H^{2m+s}(\Omega_{0},G_{0})} \\ &\leq C \left\{ C(t) \cdot C(t+\Delta t) + C(t+\Delta t) \right\} \cdot \left\{ \left\| f \right\|_{H^{2m+s}(\Omega_{0},G_{0})} \\ &+ \sum_{i=1}^{2m} \left\| g_{i} \right\|_{H^{2m+s-m_{i}}(\Omega_{0})} + \sum_{j=1}^{m} \left\| h_{j} \right\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \right\}. \end{split}$$

This implies (2.11).

Proposition 2.2. For $s \ge 1$ the solution u(t,x) of the problem (2.1)-(2.2) satisfies the following estimate

$$||u_t||_{H^{2m+s-1}(\Omega_t, G'_t)} \le C_1(t) \Big\{ ||f||_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} ||g_i||_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} ||h_j||_{H^{2m+s-m_j^3}(G_0)} \Big\},$$
(2.12)

where

(2.13)
$$C_1(t) = \begin{cases} 0(t^{1-2\alpha}) & \text{if } 1 - 2\alpha < 0\\ 0\left(1 + \beta(\alpha)\ln\frac{1}{t}\right) & \text{if } 1 - 2\alpha \ge 0, \end{cases}$$

and
$$\beta(\alpha) = 0$$
 if $\alpha \neq \frac{1}{2}$ and $\beta(\frac{1}{2}) = 1$.

Proof. For $t \in (0,T]$ we divide the interval [t,T] into k equal parts by the points $t=t_0,t_1,t_2,\ldots,t_k=T$, and put $\Delta t=t_\ell-t_{\ell-1},\ \ell=1,2,\ldots,k$. Then $u_t=\sum_{\ell=1}^k \left(u_{t_{\ell-1}}-u_{t_\ell}\right)+u_T$. Applying the estimate (2.11) to $\left(u_{t_\ell}-u_{t_{\ell-1}}\right)/\Delta t$ and the estimate (2.3) to u_T we obtain

$$\begin{aligned} \|u_{t}\|_{H^{2m+s-1}(\Omega_{t},G'_{t})} &\leq \sum_{\ell=1}^{k} \|u_{t_{\ell-1}} - u_{t_{\ell}}\|_{H^{2m+s-1}(\Omega_{t},G'_{t})} + \|u_{T}\|_{H^{2m+s-1}(\Omega_{t},G'_{t})} \\ &\leq \sum_{\ell=1}^{k} \|u_{t_{\ell-1}} - u_{t_{\ell}}\|_{H^{2m+s-1}(\Omega_{0},G_{0})} + \|u_{T}\|_{H^{2m+s-1}(\Omega_{0},G_{0})} \\ &\leq \Big(\sum_{\ell=1}^{k} C(t_{\ell-1})C(t_{\ell})\Delta t + C(T)\Big) \Big\{ \|f\|_{H^{s}(\Omega_{0},G_{0})} \\ &+ \sum_{i=1}^{2m} \|g_{i}\|_{H^{2m+s-m_{i}}(\Omega_{0})} + \sum_{j=1}^{m} \|h_{j}\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \Big\} \\ &\leq \Big\{ \sum_{\ell=1}^{k} \frac{\Delta t}{t_{\ell-1}^{\alpha} \cdot t_{\ell}^{\alpha}} + 1 \Big\} \Big\{ \|f\|_{H^{s}(\Omega_{0},G_{0})} \\ &+ \sum_{i=1}^{m} \|g_{i}\|_{H^{2m+s-m_{i}}(\Omega_{0})} + \sum_{j=1}^{m} \|h_{j}\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \Big\} \\ &\leq \Big\{ \sum_{\ell=1}^{k} \frac{\Delta t}{t_{\ell-1}^{2\alpha}} + 1 \Big\} \Big\{ \|f\|_{H^{s}(\Omega_{0},G_{0})} + \sum_{i=1}^{2m} \|g_{i}\|_{H^{2m+s-m_{i}}(\Omega_{0})} \\ &+ \sum_{j=1}^{m} \|h_{j}\|_{H^{2m+s-m_{j}^{3}}(G_{0})} \Big\}, \end{aligned}$$

It is easily seen that when k tends to infinity, the sum $\sum_{\ell=1}^{k} \frac{\Delta t}{t_{\ell-1}^{2\alpha}}$ tends to the integral

$$\int_{t}^{T} \frac{dx}{x^{2\alpha}} = \begin{cases} \frac{1}{1 - 2\alpha} \left(T^{1 - 2\alpha} - t^{1 - 2\alpha} \right) & \text{if } \alpha \neq \frac{1}{2}, \\ \ln \frac{T}{t} & \text{if } \alpha = \frac{1}{2}. \end{cases}$$

Therefore, for k sufficiently large, the sum $\sum_{\ell=1}^{k} \frac{\Delta t}{2\alpha} + 1$ can not exceed

$$C\left\{1 + t^{1-2\alpha} + \delta\left(\frac{1}{2} - \alpha\right)\ln\left(\frac{1}{t}\right)\right\},$$
 where $\delta\left(\frac{1}{2} - \alpha\right) = 0$ if $\alpha \neq \frac{1}{2}$ and $\delta\left(\frac{1}{2} - \alpha\right) = 1$ if $\alpha = \frac{1}{2}$. Hence
$$C_1(t) = C\left\{1 + t^{1-2\alpha} + \delta\left(\frac{1}{2} - \alpha\right)\ln\frac{1}{t}\right\}$$

and we obtain (2.12) with $C_1(t)$ satisfying (2.13). The proof of Proposition 2.2 is complete.

We now consider the case where $1 - 2\alpha \le 0$. Firstly, we observe that for all $s \ge 2$, by applying the a priori estimate (2.3) to $\frac{\Delta u_t}{\Delta t}$ we have

$$\begin{split} & \left\| \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{2m+s-2}(\Omega_{t},G'_{t})} \leq C(t) \Big\{ \left\| L \frac{\Delta u_{t}}{\Delta t} \right\|_{H^{s-2}(\Omega_{t},G'_{t})} \\ & + \sum_{i=1}^{2m} \left\| \left[B_{i} \frac{\Delta u_{t}}{\Delta t} \right] \right\|_{H^{2m+s-2-m_{i}-\frac{1}{2}}(\gamma_{t})} + \sum_{j=1}^{m} \left\| B_{j}^{3} \frac{\Delta u_{t}^{2}}{\Delta t} \right\|_{H^{2m+s-2-m_{j}^{3}-\frac{1}{2}}(\Gamma_{t})} \Big\}. \end{split}$$

Using the reasoning in the proof of Proposition 2.1 we obtain

$$\left\| L \frac{\Delta u_t}{\Delta t} \right\|_{H^{s-2}(\Omega_t, G_t')} \le C \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_t, G_t')} + \left\| f \right\|_{H^{s-1}(\Omega_t, G_t')}, \\ \left\| \left[B_i \frac{\Delta u_t}{\Delta t} \right] \right\|_{H^{2m+s-2-m_i-\frac{1}{2}}(\gamma_t)} \le C \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_0, G_0)} + \left\| g_i \right\|_{H^{2m+s-1-m_i}(\Omega_0)} \right\},$$

$$\left\| B_j^3 \frac{\Delta u_t^2}{\Delta t} \right\|_{H^{2m+s-2-m_j^3 - \frac{1}{2}}(\Gamma_t)} \le C \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_0, G_0)} + \left\| h_j \right\|_{H^{2m+s-m_j^3}(G_0)} \right\}.$$

Therefore,

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-2}(\Omega_t, G'_t)} \le C(t) \left\{ \left\| u_{t+\Delta t} \right\|_{H^{2m+s-1}(\Omega_0, G_0)} + \left\| f \right\|_{H^{s-1}(\Omega_t, G_t)} + \sum_{i=1}^{2m} \left\| g_i \right\|_{H^{2m+s-1-m_i}(\Omega_0)} + \sum_{j=1}^{m} \left\| h_j \right\|_{H^{2m+s-1-m_j^3}(G_0)} \right\}.$$

Hence, under the uniformly bounded condition of operators R_t , we can apply the estimate (2.12) to $\|u_{t+\Delta t}\|_{H^{2m+s-1}(\Omega_0,G_0)}$ to obtain

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-2}(\Omega_t, G_t')} \le C(t)C_1(t + \Delta t) \Big\{ \left\| f \right\|_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} \left\| g_i \right\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \left\| h_j \right\|_{H^{2m+s-m_j^3}(G_0)} \Big\}.$$
(2.14)

Using inequality (2.14) and applying the argument in the proof of Corollary 2.1 we obtain the following estimate in (Ω_0, G_0) for $\frac{\Delta u_t}{\Delta t}$ with $s \geq 2$:

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-2}(\Omega_0, G_0)} \le C(t)C_1(t+\Delta t) \Big\{ \|f\|_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} \|g_i\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \|h_j\|_{H^{2m+s-m_j^3}(G_0)} \Big\}.$$
(2.15)

Thus, estimate (2.15) yields the following proposition.

Proposition 2.3. For $s \ge 2$ and $2m + s \le N$, the solution of the problem (2.1)-(2.2) satisfies the following estimate

$$||u_t||_{H^{2m+s-2}(\Omega_t, G_t')} \le C_2(t) \Big\{ ||f||_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} ||g_j||_{H^{2m+s-m_i}(\Omega_0)} + \sum_{i=1}^{m} ||h_j||_{H^{2m+s-m_j^3}(G_0)} \Big\}$$

$$(2.16)$$

where

(2.17)
$$C_2(t) = \begin{cases} o(t^{2-3\alpha}) & \text{if } 2 - 3\alpha < 0\\ o(1 + \delta(\frac{2}{3} - \alpha) \ln \frac{1}{t}) & \text{if } 2 - 3\alpha \ge 0 \end{cases}$$

with
$$\delta\left(\frac{2}{3} - \alpha\right) = 0$$
 if $\alpha \neq \frac{2}{3}$; $\delta\left(\frac{2}{3} - \alpha\right) = 1$ if $\alpha = \frac{2}{3}$.

Proof. The estimate (2.16) can be proved in a similar manner as it was done for Proposition 2.1 except for one thing that the sum $\sum_{\ell=1}^k C(t_{\ell-1}) \cdot C(t_\ell) \Delta t + C(T)$ can be replaced by $\sum_{\ell=1}^k C(t_{\ell-1}) \cdot C_1(t_\ell) \Delta t + C(T)$ for which the following estimate holds

$$\sum_{\ell=1}^{k} C(t_{\ell-1})C_1(t_{\ell})\Delta t + C(T) \le C \Big\{ \sum_{\ell=1}^{k} \frac{\Delta t}{t_{\ell-1}^{\alpha} t_{\ell}^{2\alpha-1}} + 1 \Big\}$$

$$\le C \Big\{ \sum_{\ell=1}^{k} \frac{\Delta t}{t_{\ell-1}^{3\alpha-1}} + 1 \Big\}.$$

Note that when t tends to infinity the sum $\sum_{\ell=1}^k \frac{\Delta t}{t_{\ell-1}^{3\alpha-1}}$ tends to the integral

$$\int_{t}^{T} \frac{dx}{x^{3\alpha - 1}} = \begin{cases} \frac{1}{2 - 3\alpha} (T^{2 - 3\alpha} - t^{2 - 3\alpha}) & \text{if } 2 - 3\alpha \neq 0\\ \ln \frac{T}{t} & \text{if } 2 - 3\alpha = 0. \end{cases}$$

Therefore, for k sufficiently large, the sum $\sum_{\ell=1}^{k} C(t_{\ell-1}) \cdot C_1(t_{\ell}) \Delta t + C(T)$ cannot exceed $C\{1 + t^{2-3\alpha} + \delta(2/3 - \alpha)\ln(1/t)\}$. Now, putting

$$C_2(t) = \{1 + t^{2-3\alpha} + \delta(2/3 - \alpha)\ln(1/t)\}$$

we obtain the estimate (2.16) with $C_2(t)$ satisfying (2.17). The proof of Proposition 2.3 is complete.

If $2-3\alpha$ is not positive, using the above reasoning for $s \geq 3$, $s \geq 4,...$, we obtain after k steps the following estimate for $u_t(t,x)$ for $s \geq k$, $2m + s \leq N$.

$$||u_t||_{H^{2m+s-k}(\Omega_t, G'_t)} \le C_k(t) \Big\{ ||f||_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} ||g_i||_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} ||h_j||_{H^{2m+s-m_j^3}(G_0)} \Big\}$$
(2.18)

where

(2.19)
$$C_k(t) = \begin{cases} 0\left(t^{k-(k+1)\alpha}\right) & \text{if } \alpha > \frac{k}{k+1}, \\ 0\left(1+\delta\left(\frac{k}{k+1}-\alpha\right)\ln\frac{1}{t}\right) & \text{if } \alpha \le \frac{k}{k+1}, \end{cases}$$

and

$$\delta\left(\frac{k}{k+1} - \alpha\right) = \begin{cases} 0 & \text{if } \alpha \neq \frac{k}{k+1}, \\ 1 & \text{if } \alpha = \frac{k}{k+1}. \end{cases}$$

Observe that the behaviour of the solutions of the boundary value problems (2.1)-(2.2) in the variable domains (Ω_t, G'_t) are presented by the estimate (2.18) which is essentially better than that obtained in [4].

3. Conjugation problem in limit domain

Consider the following boundary value conjugation problem

(3.1)
$$L_1(x, D)u^1(x) = f_1(x) \text{ in } \Omega_0,$$
$$L_2(x, D)u^2(x) = f_2(x) \text{ in } G'_0 = G_0 \setminus \Omega_0,$$

$$[B_i(x,D)u(x)] = B_i^1(x,D)u^1(x) + B_i^2(x,D)u^2(x) = g_i(x) \text{ on } \gamma_0,$$
(3.2)
$$B_i^3(x,D)u^2(x) = h_i(x) \text{ on } \Gamma_0 \quad (i=1,2,\dots,2m,\ j=1,2,\dots,m).$$

In the sequel, the solution $u_0(x)$ of the problem (3.1)-(3.2) will be considered as the limit (in some sense) of the solutions $u_t(t,x)$ of problem (2.1)-(2.2) in (Ω_t, G'_t) for $t \in (0,T]$ when $t \to 0$. Firstly, as $0 < \alpha < 1$, we can find the least positive integer k_0 such that.

$$(3.3) 0 < \alpha < \frac{k_0}{k_0 + 1}.$$

Based on the estimates (2.18), (2.19) and (3.3) for $s \ge k_0$ we find that there exists a constant C such that the solution of the problems (2.1)-(2.2) satisfies the following condition

$$||u_t||_{H^{2m+s-k_0}(\Omega_t, G'_t)} \le C \Big\{ ||f||_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} ||g_i||_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} ||h_j||_{H^{2m+s-m_j^3}(G_0)} \Big\},$$
(3.4)

where $2m + s \leq N$, $s \geq k_0$. Using the estimate (3.4) and the reasoning used in the proof of Proposition 2.1 and Corollary 2.1 we get the following estimate for $\Delta u_t/\Delta t$ in the domain (Ω_0, G_0) :

$$\left\| \frac{\Delta u_t}{\Delta t} \right\|_{H^{2m+s-(k_0+1)}(\Omega_0, G_0)} \le C \left\{ \left\| f \right\|_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} \left\| g_i \right\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{i=1}^{m} \left\| h_j \right\|_{H^{2m+s-m_j^3}(G_0)} \right\},$$

for all $s \geq k_0 + 1$ and $2m + s \leq N$. Therefore, for $s \geq k_0 + 1$ we have

$$\|\Delta u_t\|_{H^{2m+s-(k_0+1)}(\Omega_0,G_0)} \le C \cdot |\Delta t| \cdot \left\{ \|f\|_{H^s(\Omega_0,G_0)} + \sum_{i=1}^{2m} \|g_i\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \|h_j\|_{H^{2m+s-m_j^3}(G_0)} \right\}.$$

The inequality (3.5) shows that the function $u_t(t,x)$ can be considered as an abstract function of value in the space $H^{2m+s-(k_0+1)}(\Omega_0,G_0)$ for $s \geq k_0+1$ and

 $2m + s \le N$, which is uniformly continuous in $t \in (0, T]$. Hence there exists the limit

(3.6)
$$\lim_{t \to 0} u_t(t, x) = u_0(x),$$

in $H^{2m+s-(k_0+1)}(\Omega_0, G_0)$.

Theorem 3.1. Suppose that

$$f_1(x) \in H^s(\Omega_0), \quad f_2(x) \in H^s(G_0),$$

 $g_i(x) \in H^{2m+s-m_i}(\Omega_0) \quad (i = 1, 2, ..., m),$
 $h_j(x) \in H^{2m+s-m_j^3}(G_0) \quad (j = 1, 2, ..., m)$

for all $s \ge k_0 + 1$, where k_0 is the least integer that satisfies (3.3). Then the function $u_0(x)$ defined in (3.6) is a solution of the boundary value conjugation problem (3.1)-(3.2) and the following estimate holds

$$||u_0||_{H^{2m+s-(k_0+1)}(\Omega_0, G_0')} \le C \Big\{ ||f||_{H^s(\Omega_0, G_0)} + \sum_{i=1}^{2m} ||g_i||_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} ||h_j||_{H^{2m+s-m_j^3}(G_0)} \Big\}$$
(3.7)

for all $s \geq k_0 + 1$.

Proof. For $t \in (0,T]$ and $s \ge k_0 + 1$ we have

$$\begin{aligned} & \left\| L_{1}u_{0}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0})} \\ & \leq \left\| L_{1}u_{0}^{1} - L_{1}u_{t}^{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0})} + \left\| L_{1}u_{t}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0})} \\ & \leq C_{1} \left\| u_{0}^{1} - u_{t}^{1} \right\|_{H^{2m+s-(k_{0}+1)}(\Omega_{0})} + \left\| L_{1}u_{t}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0} \setminus \Omega_{t})'} \end{aligned}$$

where

$$\begin{aligned} & \left\| L_{1}u_{t}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0} \setminus \Omega_{t})} \\ & \leq \left\| L_{1}u_{t}^{1} - L_{1}u_{0}^{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0} \setminus \Omega_{t})} + \left\| L_{1}u_{0}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0} \setminus \Omega_{t})} \\ & \leq C_{2} \left\| u_{t}^{1} - u_{0}^{1} \right\|_{H^{2m+s-(k_{0}+1)}(\Omega_{0})} + \left\| L_{1}u_{0}^{1} - f_{1} \right\|_{H^{s-(k_{0}+1)}(\Omega_{0} \setminus \Omega_{t})}. \end{aligned}$$

Then

$$||L_1 u_0^1 - f_1||_{H^{s-(k_0+1)}(\Omega_0)} \le C||u_t^1 - u_0^1||_{H^{2m+s-(k_0+1)}(\Omega_0)} + ||L_1 u_0^1 - f_1||_{H^{s-(k_0+1)}(\Omega_0 \setminus \Omega_t)}.$$

Applying a similar argument to $L_2u_0^2 - f_2$ we have

$$||L_{2}u_{0}^{2} - f_{2}||_{H^{s-(k_{0}+1)}(G'_{0})} \leq C||u_{t}^{2} - u_{0}^{2}||_{H^{2m+s-(k_{0}+1)}(G'_{0})} + ||L_{2}u_{0}^{2} - f_{2}||_{H^{s-(k_{0}+2)}(G'_{0}\setminus G'_{t})},$$

where $s \geq k_0 + 1$. Finally we obtain the estimate

$$||Lu_0 - f||_{H^{s-(k_0+1)}(\Omega_0, G'_0)} \le C||u_t - u_0||_{H^{2m+s-(k_0+1)}(\Omega_0, G_0)} + ||Lu_0 - f||_{H^{s-(k_0+1)}(\Omega_0 \setminus \Omega_t, G'_0 \setminus G'_t)}$$

for all $s \geq k_0 + 1$ and $2m + s \leq N$. If t tends to 0, then the first term in the right hand side of the above expression tends to 0 by (3.6) and the second term also tends to 0 because $Lu_0 - f \in H^{s-(k_0+1)}(\Omega_0, G'_0)$. Therefore $||Lu_0 - f||_{H^{s-(k_0+1)}(\Omega_0, G'_0)} = 0$, i.e. $Lu_0 = f$ in (Ω_0, G'_0) . We now verify that $u_0(x)$ satisfies the boundary condition (3.2). First of all, the following estimate holds for $s \geq k_0 + 1$,

$$\begin{aligned} & \left\| \left[B_{i}u_{0} \right] - g_{i} \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{0})} \\ & \leq \left\| \left[B_{i}u_{0} \right] - g_{i} \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{t})} + \left\| A_{t} \left(\left[B_{i}u_{0} \right] - g_{i} \right) \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{t})} \\ & \leq \left\| \left[B_{i}u_{0} \right] - \left[B_{i}\dot{u}_{t} \right] \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{t})} + \left\| A_{t} \left(\left[B_{i}u_{0} \right] - g_{i} \right) \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{0})} \\ & \leq C \left\| u_{t} - u_{0} \right\|_{H^{2m+s-(k_{0}+1)}(\Omega_{0},G_{0})} + \left\| A_{t} \left(\left[B_{i}u_{0} \right] - g_{i} \right) \right\|_{H^{2m+s-m_{i}-(k_{0}+1)-\frac{1}{2}}(\gamma_{0})}, \end{aligned}$$

where A_t is the operator $A_{\Delta t}$ defined in (1.5) for the case $\Delta t = t - 0$. By (1.6) the second term in the last sum tends to 0 as $t \to 0$, while the first term tends to 0 by (3.6). Therefore, when $t \to 0$ we have

$$||[B_i u_0] - g_i||_{H^{2m+s-m_i-(k_0+1)-\frac{1}{2}}(\gamma_0)} = 0, \quad (i = 1, 2, \dots, m).$$

By a similar reasoning we also obtain

$$||B_j^3 u_0^2 - g_j||_{H^{2m+s-m_j^3-(k_0+1)-\frac{1}{2}}(\Gamma_0)} = 0, \quad (j=1,2,\ldots,m).$$

Hence $u_0(x)$ satisfies the boundary condition (3.2). Moreover, for $s \geq k_0 + 1$, using (3.4) we have

$$\begin{aligned} \|u_0\|_{H^{2m+s-(k_0+1)}(\Omega_0,G_0')} &\leq \|u_0 - u_t\|_{H^{2m+s-(k_0+1)}(\Omega_0,G_0')} + \|u_t\|_{H^{2m+s-(k_0+1)}(\Omega_0,G_0')} \\ &\leq \|u_0 - u_t\|_{H^{2m+s-(k_0+1)}(\Omega_0,G_0')} + C\Big\{ \|f\|_{H^s(\Omega_0,G_0')} \\ &+ \sum_{i=1}^{2m} \|g_i\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \|h_j\|_{H^{2m+s-m_j^3}(G_0)} \Big\}. \end{aligned}$$

Let t to 0. Then we obtain the estimate (3.7). Theorem 3.1 is proved.

Remark. By value of interpolation theorem we get from (3.4) and (3.5) the following estimate for $s \ge k_0 + 1$ and $0 \le \varepsilon \le 1$

$$\|\Delta u_t\|_{H^{2m+s-(k_0+\varepsilon)}(\Omega_0,G_0)} \le C|\Delta t|^{\varepsilon} \Big\{ \|f\|_{H^s(\Omega_0,G_0)} + \sum_{i=1}^{2m} \|g_i\|_{H^{2m+s-m_i}(\Omega_0)} + \sum_{j=1}^{m} \|h_j\|_{H^{2m+s-m_j^3}(G_0)} \Big\}.$$
(3.8)

Therefore the solution $u_0(x)$ of boundary value conjugation problem (3.1)-(3.2) in the domain (Ω_0, G'_0) belongs to $H^{2m+s-(k_0+\varepsilon)}(\Omega_0, G'_0)$.

Theorem 3.2. Under the assumptions of Theorem 3.1, the solution of problem (3.1)-(3.2) is unique.

Proof. Let $u(x) \in H^{2m+s-(k_0+1)}(\Omega_0, G'_0)$ be a solution of the boundary value conjugation problem

(3.9)
$$L_{1}(x, D)u^{1}(x) = 0 \quad \text{in } \Omega_{0},$$

$$L_{2}(x, D)u^{2}(x) = 0 \quad \text{in } G'_{0} = G_{0} \setminus \Omega_{0},$$

$$[B_{i}(x, D)u(x)] = 0 \quad \text{on } \gamma_{0} \quad (i = 1, 2, \dots, 2m),$$

$$B_{i}^{3}(x, D)u^{2}(x) = 0 \quad \text{on } \Gamma_{0} \quad (j = 1, 2, \dots, m).$$

Applying the a prior estimate (2.3) to $R_0u(x)$, where R_0 is the operator of extension to (Ω_0, G_0) , we have

$$\begin{aligned} & \left\| R_0 u \right\|_{H^{2m+s-(k_0+1)}(\Omega_t, G_t')} \le C(t) \Big\{ \left\| L(R_0 u) \right\|_{H^{s-(k_0+1)}(\Omega_t, G_t')} \\ & + \sum_{i=1}^{2m} \left\| \left[B_i R_0 u \right] \right\|_{H^{2m+s-(k_0+1)-m_i-\frac{1}{2}}(\gamma_t)} + \sum_{j=1}^{m} \left\| B_j^3 R_0 u^2 \right\|_{H^{2m+s-(k_0+1)-m_j^3-\frac{1}{2}}(\Gamma_t)} \Big\}, \end{aligned}$$

for $s \geq k_0 + 1$ and $t \in (0, T]$. Observe that for $t \in (0, T]$ and $\Omega_1 \subset \Omega_0$, under condition (3.9) we have $L_1R_0u^1 = 0$ in Ω_t . Moreover, $\Omega_0 \subset G_t \subset G_0$. Hence $G'_t = G_t \setminus \Omega_t = (G_t \setminus \Omega_0) \cup (\Omega_0 \setminus \Omega_t)$. Under condition (3.9) we have

$$L_2 R_0 u^2 = \begin{cases} L_2 R_0 u^2(x) & \text{if } x \in \Omega_0 \setminus \Omega_t, \\ 0 & \text{if } x \in G_t \setminus \Omega_0. \end{cases}$$

Therefore, from (1.3) we deduce

$$||LR_0u||_{H^{s-(k_0+1)}(\Omega_t, G'_t)} = ||L_2R_0u^2||_{H^{s-(k_0+1)}(\Omega_0\setminus\Omega_t)}$$

$$\leq C \cdot t||L_2R_0u^2||_{H^{s-k_0}(\Omega_0\setminus\Omega_t)} \leq C \cdot t||R_0u^2||_{H^{2m+s-k_0}(\Omega_0)}.$$

Applying the inequality (1.6) we get the estimates

$$\begin{split} \left\| [B_{i}R_{0}u] \right\|_{H^{2m+s-(k_{0}+1)-m_{i}-\frac{1}{2}(\gamma_{t})}} &= \left\| [B_{i}R_{0}u]_{\gamma_{t}} - [B_{i}R_{0}u]_{\gamma_{0}} \right\|_{H^{2m+s-(k_{0}+1)-m_{i}-\frac{1}{2}(\gamma_{t})}} \\ &= \left\| A_{t}[B_{i}R_{0}u] \right\|_{H^{2m+s-(k_{0}+1)-m_{i}-\frac{1}{2}(\gamma_{t})}} \\ &\leq C \cdot t \left\| [B_{i}R_{0}u] \right\|_{H^{2m+s-k_{0}-m_{i}}(\Omega_{0},G_{0})} \\ &\leq C \cdot t \left\| R_{0}u \right\|_{H^{2m+s-k_{0}}(\Omega_{0},G_{0})}, \\ \left\| B_{j}^{3}R_{0}u^{2} \right\|_{H^{2m+s-(k_{0}+1)-m_{j}^{3}-\frac{1}{2}}(\Gamma_{t})} &= \left\| A_{t}B_{j}^{3}R_{0}u^{2} \right\|_{H^{2m+s-(k_{0}+1)-m_{j}^{3}-\frac{1}{2}}(\Gamma_{t})} \\ &\leq C \cdot t \left\| B_{j}^{3}R_{0}u^{2} \right\|_{H^{2m+s-k_{0}-m_{j}^{3}}(G_{0})} \\ &\leq C \cdot t \left\| R_{0}u^{2} \right\|_{H^{2m+s-k_{0}}(G_{0})}. \end{split}$$

Then we have

$$||R_0u||_{H^{2m+s-(k_0+1)}(\Omega_t,G_t')} \le C(t) \cdot t \cdot ||R_0u||_{H^{2m+s-k_0}(\Omega_0,G_0)}.$$

Therefore, under the condition (2.4) we have

$$\lim_{t \to 0} \|R_0 u\|_{H^{2m+s-(k_0+1)}(\Omega_t, G_t')} = 0.$$

Hence $R_0 u \equiv 0$ in $H^{2m+s-(k_0+1)}(\Omega_0, G_0')$, or in other words, $u(x) \equiv 0$ in (Ω_0, G_0') . Theorem (3.2) is proved.

References

- [1] L. Ivanov, On diffraction problem with non-cilindrically discontinuous boundary, Differentsialnye Uravneniya 12 (1976), 1485-1494 (in Russian).
- [2] L. Ivanov, L. Kotko and S. Krein, Boundary value problems in variable domains, in Differential equations and their applications 19, 7-160, Inst. of Math. Academy of Science of Lithuanian SSR, Vilnius, 1977 (in Russian).
- [3] S. G. Krein, Behaviour of the solutions boundary value elliptic problems for variable domains, Studia Mathematica 31 (1968), 411-428 (in Russian).
- [4] Hoang Quoc Toan and L. Kotko, Boundary value elliptic problems in variable domains, Differentsialnye Uravneniya 15 (1979), 458-464 (in Rusian).
- [5] Hoang Quoc Toan, Boundary problems in limit domains and non elliptic boundary problems for partial differential equations, Bull. Math. Soc. Sci. Math. R. S. Roumanie 32 (1988), 125-129.
- [6] Hoang Quoc Toan, Espace à poids $H_a^s(G)$ et problèmes aux limites elliptique', Acta Mathematica Vietnamica 19 (1994), 85-96.

FACULTY OF MATHEMATICS, MECHANICS AND INFORMATICS HANOI NATIONAL UNIVERSITY 334 NGUYEN TRAI, THANH XUAN, HANOI, VIETNAM