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NOETHER PROPERTIES OF LINEAR OPERATORS
INDUCED BY ALGEBRAIC ELEMENTS

NGUYEN VAN MAU AND NGUYEN TAN HOA

Abstract. In this paper we give some algebraic characterizations of an
algebraic element with the characteristic polynomial having single roots
and then inverstigate the Noether properties of bounded linear operators
of the form

(1) K=
∑

(i)∈Γ
A(i)T

(i),

where
Γ=

{
(i)=(i1,i2,...,im) | 0≤ik≤nk−1, k=1,...,m

}
,

A(i)=Ai1i2...im , T (i)=T
i1
1 T

i2
2 ...T im

m ,

Tk are the commutative algebraic elements of order nk, respectively.

Introduction

The Noether theory of singular integral operators with a Carleman shift
was considered by several authors (see, e.g. [1], [3]). In 1973, the Noether
properties of bounded linear operators with involution in the Banach space
were considered by Gokhberg and Krupnic [2].

In this paper we give some algebraic characterizations of an algebraic
element with the characteristic polynomial having single roots and then
inverstigate the Noether properties of bounded linear operators of the form
(1) by means of algebraic methods

1. Characterization of an algebraic element
with single roots

Let X be a Banach space over the field C of complex numbers. Denote
by L0(X) a Banach algebra of bounded linear operators acting in X and
by J(X) the two-sided ideal of all compact operators belonging to L0(X).
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Suppose that there exists a subalgebra L(X) belonging to L0(X) such
that AB −BA ∈ J(X) for all A,B ∈ L(X).

In the sequel, we assume that J(X) ⊂ L(X).
Let T ∈ L0(X) be an algebraic operator of order n with characteristic

polynomial having single roots, i.e.,

(2) PT (t) =
n∏

i=1

(t− ti), ti 6= tj for i 6= j.

Denote by Pj (j = 1, ..., n) the projectors associated with T , we have (see
[5])

PiPj = δijPj (δij is the Kronecker symbol),

T k =
n∑

j=1

tkj Pj (where t0j
def= 1, j = 1, ..., n),

Pj =
n∏

ν=1
ν 6=j

T − tνI

tj − tν
.

In particular, if T is an involution of order n, i.e. tj = εj (j = 1, . . . , n),
where ε1 = exp(2πi/n), εj = εj

1, then

Pj =
n∏

ν=1
ν 6=j

T − ενI

εj − εν
=

1
n

n−1∑
ν=0

εn−ν
j T ν .

Definition 1.1. We say that an algebraic element T ∈ L0(X) with the
characteristic polynomial (2) is right L(X)-linearly independent with re-
spect to J(X) if

n∑

k=1

AkPk = 0 (mod J(X)); Ak ∈ L(X)

implies Ak = 0 (mod J(X)), k = 1, . . . , n. (Similarly, if
n∑

k=1

PkAk = 0

(mod) J(X)), Ak ∈ L(X) implies Ak = 0 (mod J(X)) (k = 1, . . . , n), then
T is said to be left L(X)-linearly independent with respect to J(X)).

Definition 1.2. An algebraic element T ∈ Lo(X) with the characteristic
polynomial (2) is said to be L(X)-linearly independent with respect to
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J(X) if it is right and left L(X)-linearly independent with respect to
J(X).

Lemma 1.1. Every algebraic element of order n with the characteristic
polynomial having single roots can be written in the form of the polynomial
of the involution of order n.

Proof. Let T be an algebraic element with the characteristic polynomial
of the form (2). Putting

(3) S = Q(T ), Qj =
n∏

ν=1
ν 6=j

S − ενI

εj − εν
, j = 1, . . . , n,

where

Q(t) =
n∑

i=1

n∏
µ=1
µ6=i

εi
t− tµ
ti − tµ

,

we obtain

(4) T =
n∑

j=1

tjQj =
n−1∑
ν=0

( 1
n

n∑

j=1

tjε
n−ν
j

)
Sν .

Since PT (t) =
n∏

i=1

(t− ti) and Q(ti) = εi 6= Q(tj) = εj if i 6= j, we have

(see [4], [5])

PS(t) = PQ(T )(t) =
n∏

i=1

(t−Q(ti)) =
n∏

i=1

(t− εi) = tn − 1.

Hence S is an involution of order n. The lemma is proved.

Lemma 1.2. Let T ∈ L0(X) be an algebraic element with the charac-
teristic polynomial (2) and S = Q(T ) be defined by (3). The following
statements are equivalent

a) T is right L(X)-linearly independent with respect to J(X);

b)
n−1∑
k=0

AkSk = 0 (mod J(X)), Ak ∈ L(X) implies

(5) Ak = 0 (mod J(X)) (k = 0, . . . , n− 1);
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c) S is right L(X) - linearly independent with respect to J(X).

Proof. a) ⇒ b): Suppose that T is right L(X)-linearly independent with
respect to J(X) and

n−1∑

k=0

AkSk = 0 (mod J(X)), Ak ∈ L(X), k = 0, ..., n− 1,

i.e.

n−1∑

k=0

Ak

( n∑

i=1

n∏
ν=1
ν 6=i

εi
T − tνI

ti − tν

)k

=
n−1∑

k=0

Ak

( n∑

i=1

εk
i Pi

)

=
n∑

i=1

( n−1∑

k=0

εk
i Ak

)
Pi = 0 (mod J(X)).

Since
n−1∑
k=0

εk
i Ak ∈ L(X) for all i = 1, . . . , n, we get

n−1∑

k=0

εk
i Ak = 0 (mod J(X)), i = 1, . . . , n.

Hence
n−1∑

k=0

εk
i [Ak] = 0, i = 1, . . . , n,

where [A] is the coset defined by an element A ∈ L0(X) in the quotient
algebra L0(X)/J(X). It is easy to see that the determinant of this system
is the Vandermonde determinant of the numbers 1, ε1, ε2, . . . , εn−1. This
implies

[Ak] = 0 i.e., Ak = 0 (mod J(X)), k = 0, ..., n− 1.

b) ⇒ a): Suppose that (5) is satisfied and

n∑

i=1

AiPi = 0 (mod J(X)), Ai ∈ L(X), i = 1, ..., n.
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This implies
AkPk = 0 (mod J(X))), k = 1, . . . , n,

i.e.

(6) Ak

n∏
i=1
i 6=k

T − tiI

tk − ti
= 0 (mod J(X)).

From (4) and (6), we obtain

Ak

n∏
i=1
i 6=k

n∑
j=1

tjQj − tiI

tk − ti
= Ak

n∑

j=1

( n∏
i=1
i 6=k

tj − ti
tk − ti

)
Qj

= AkQk =
1
n

n−1∑

j=0

Akεn−j
k Sj = 0 (mod J(X)), k = 1, . . . , n.

Since εn−j
k Ak ∈ L(X), we get

εn−j
k Ak = 0 (mod J(X)), k, j = 1, . . . , n.

Thus
Ak = 0 (mod J(X)), k = 1, . . . , n.

Hence T is right L(X)-linearly independent with respect to J(X). In the
same way, we can prove b) is equivalent to c).

By similar argument, we obtain the following result

Lemma 1.3. Let T ∈ L0(X) be an algebraic element with the charac-
teristic polynomial (2) and S = Q(T ) be defined by (3). The following
statements are equivalent:

a) T is left L(X)-linearly independent with respect to J(X);

b)
n−1∑
k=0

SkAk = 0 (mod J(X)), Ak ∈ L(X), implies

Ak = 0 (mod J(X)), (k = 0, . . . , n− 1);

c) S is left L(X)-linearly independent with respect to J(X).
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Lemma 1.4. Let T ∈ L0(X) be an algebraic element with the character-
istic polynomial (2) and S = Q(T ) be defined by (3). If

(7) SjASn−j ∈ L(X) for all A ∈ L(X) (j = 1, . . . , n),

then the following statements are equivalent:

a)
n−1∑
k=0

AkSk = 0 (mod J(X)), Ak ∈ L(X), implies

(8) Ak = 0 (mod J(X)) (k = 0, . . . , n− 1);

b)
n−1∑
k=0

SkAk = 0 (mod J(X)), Ak ∈ L(X), implies

(9) Ak = 0 (mod J(X)), (k = 0, . . . , n− 1).

Proof. Suppose that (8) is satisfied and

n−1∑

k=0

SkAk = 0 (mod J(X)), Ak ∈ L(X),

i.e.
n−1∑

k=0

(SkAkSn−k)Sk = 0 (mod J(X)).

Since SkAkSn−k ∈ L(X), k = 0, . . . , n− 1, we get

SkAkSn−k = 0 (mod J(X)), k = 0, . . . , n− 1.

Hence Ak = 0 (mod J(X)), k = 0, . . . , n− 1.
Conversely, suppose that (9) is satisfied and

n−1∑

k=0

AkSk = 0 (mod J(X)),

i.e.
n−1∑

k=0

Sk(Sn−kAkSk) = 0 (mod J(X)).
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Since Sn−kAkSk ∈ L(X), k = 0, . . . , n− 1, we get

Sn−kAkSk = 0 (mod J(X)), k = 0, . . . , n− 1.

Hence Ak = 0 (mod J(X)), k = 0, . . . , n− 1. The Lemma is proved.

Lemmas 1.2, 1.3 and 1.4 together imply the following result.

Theorem 1.1. Let T ∈ Lo(X) be an algebraic element with the char-
acteristic polynomial (2) and S = Q(T ) be defined by (3). Suppose that
the condition (7) is satisfied. Then T is L(X)-linearly independent with
respect to J(X) if and only if S is L(X)-linearly independent with respect
to J(X).

2. Noether properties and the index formula of
linear operators induced by an algebraic element

Consider the following operators

(10) K0 =
n−1∑

k=0

AkT k,

where Ak ∈ L(X) (k = 0, . . . , n − 1) and T ∈ L0(X) is an algebraic
operator with the characteristic polynomial of the form (2).

We assume that SjASn−j ∈ L(X) for all A ∈ L(X) (j = 1, . . . , n),
where S = Q(T ) is defined by (3).

Then K0 can be written in the form

(11) K0 =
n−1∑

k=0

BkSk,

where

(12) Bk =
1
n

n∑

i=1

εn−k
i

( n−1∑

j=0

tjiAj

)
, k = 0, . . . , n− 1.

Indeed, from Lemma 1.1 we have

K0 =
n−1∑

k=0

AkT k =
n−1∑

k=0

Ak

( n∑

j=1

n∏
ν=1
ν 6=j

tj
S − ενI

εj − εν

)k

=
n−1∑

k=0

Ak

( n∑

j=1

tkj Qj

)
=

n−1∑

k=0

[ 1
n

n∑

j=1

εn−ν
j

( n−1∑

k=0

tkj Ak

)]
Sν ,
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where Qj (j = 1, . . . , n) are the projectors associated with S.
Denote

Kµ =
n−1∑

k=0

εk
µBkSk, µ = 1, . . . , n− 1,

where Bk (k = 0, . . . , n− 1) are defined by (12).
Consider the operator E(K0) belonging to L0(Xn)

(13) E(K0) =
[
Cij

]n−1

i,j=0
=




B00 B10 . . . Bn−10

Bn−11 B01 . . . Bn−21

...
...

. . .
...

B1n−1 B2n−1 . . . B0n−1


 ,

where for i, j = 0, ..., n− 1,

Bij = SjBiS
n−j ∈ L(X),

Cij =
{

Bj−i i if j ≥ i,

Bn+j−i i if j < i.

The matrix E(K0) is said to be the symbol over L(X) of the operator
K0 of the form (10).

Lemma 2.1. Suppose that K0 is defined by (10) and

K ′
0 =

n−1∑

k=0

A′kT k, A′k ∈ L(X) (k = 0, . . . , n− 1).

Then
a) E(λK0) = λE(K0), λ ∈ C;
b) E(K0 + K ′

0) = E(K0) + E(K ′
0);

c) E(K0K
′
0) = E(K0)E(K ′

0).

Proof. Evidently, E(λK0) = λE(K0) and E(K0+K ′
0) = E(K0)+E(K ′

0).
We have

K0K
′
0 =

n−1∑

k=0

AkT k
n−1∑

j=0

A′jT
j =

n−1∑

k=0

BkSk
n−1∑

j=0

B′
jS

j

=
n−1∑

k=0

n−1∑

j=0

BkB′
jkSj+k =

n−1∑

j=0

DjS
j ,
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where Dj = B0B
′
j0 + B1B

′
j−1 1 + . . . + Bn−1B

′
j+1 n−1, j = 0, . . . , n− 1,

Dj ∈ L(X). Hence
E(K0K

′
0) =

[
Pij

]n−1

i,j=0
,

where for i, j = 0, 1, . . . , n− 1,

Pij = Dj−i i(14)

= B0iB
′
j−i i + B1iB

′
j−i−1 i+1 + . . . + Bn−1 iB

′
j−i+1 i−1,

Dj−i i :=
{

Dj−i i if j ≥ i,

Dn+j−i i if j < i.

On the other hand, if

E(K0)E(K ′
0) =

[
Qij

]n−1

i,j=0

then

(15) Qij =
n−1∑

k=0

Bk−i iB
′
j−k k.

From (14) and (15), we get Pij = Qij , i, j = 0, . . . , n − 1. The lemma is
proved.

It is easy to prove that the set K(X) of all operators K0 of the form (10)
and the set H(Xn) of all operators E(K0) of the form (13) form algebras.

Lemma 2.2. Suppose that T is L(X)-linearly independent with respect to
J(X). Then K0 is a compact operator if and only if E(K0) is a compact
operator.

Proof. Denote by J(Xn) the two-side ideal of all compact operators be-
longing to L0(Xn). Evidently, if E(K0) = 0 (modJ(Xn)) then K0 =
0 (modJ(X)).

Conversely, suppose that

(16) K0 = 0 (mod J(X)).

The assumption and Theorem 1.1 together imply S is L(X)-linearly in-
denpendent with respect to J(X). According to Lemma 1.2, from (16) we
have

Bk = 0 (mod J(X)), k = 0, . . . , n− 1.
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Hence
E(K0) = 0 (mod J(Xn)).

Denote

[K(X)] = K(X)/J(X), [H(Xn)] = H(Xn)/J(Xn).

Lemmas 2.1 and 2.2 together imply the following result

Theorem 2.1. Suppose that T is L(X)-linearly independent with respect
to J(X). Then [K(X)] and [H(Xn)] are isomorphic.

Theorem 2.2. Suppose that there exists a Noether operator U belonging
to L0(X) such that

UAk −AkU ∈ J(X) (k = 0, . . . , n− 1),

US = ε1SU,(17)

where S = Q(T ) is defined by (3). Then
a) Either Kµ (µ = 0, . . . , n−1) are Noether operators or aren’t Noether

operators, simutaneously;
b) If Kµ (µ = 0, . . . , n−1) are Noether operators, simutaneously, then

Ind Kµ = Ind K0 (µ = 1, . . . , n− 1);

c) Either K0 and E(K0) are Noether operators or aren’t Noether oper-
ators, simutaneously. In the case K0 and E(K0) are Noether operators,
the following equality holds

Ind K0 =
1
n

Ind E(K0).

Proof. a) From (17), we have

UBk −BkU ∈ J(X),

U jSk = εk
j SkU j , k, j = 1, 2, . . .

Hence

U jK0 = U j
n−1∑

k=0

AkT k = U j
n−1∑

k=0

BkSk

=
( n−1∑

k=0

εk
j BkSk

)
U j = KjU

j (mod J(X)).
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Thus

U jK0 = KjU
j(mod J(X)), i.e K0 = RjKjU

j(mod J(X)),

where Rj is a regularized of U j to J(X). This implies K0 and Kj are
Noether operators or aren’t Noether operators, simultaneously.

b) If Kj (j = 0, . . . , n− 1) are Noether operators, we have

Ind (U jK0) = Ind (KjU
j).

Hence
Ind U j + Ind K0 = Ind Kj + Ind U j ,

i.e.
Ind K0 = Ind Kj , j = 1, . . . , n− 1.

c) Denote

An =




I Sn−1 Sn−2 . . . S
I εn−1S

n−1 εn−2S
n−2 . . . ε1S

...
...

...
. . .

...
I εn−1

n−1S
n−1 εn−1

n−2S
n−2 . . . εn−1

1 S




Bn =




I I I . . . I
S ε1S ε2S . . . εn−1S
...

...
...

. . .
...

Sn−1 εn−1
1 Sn−1 εn−1

2 Sn−1 . . . εn−1
n−1S

n−1




Nn = n diag (K0,K1, . . . ,Kn−1).

A direct check shows that the following equalities are satisfied

AnBn = BnAn = n diag (I, I, . . . , I),(18)

AnE(K0)Bn = Nn.(19)

From (18), we have
Ind An = Ind Bn = 0.

This and (19) together imply that either E(K0) and Nn are Noether ope-
rators and Ind E(K0) = ind Nn or E(K0) and Nn aren’t Noether opera-
tors.
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On the other hand, it is easy to prove that Nn is Noether operator if
and only if Kj (j = 0, . . . , n− 1) are Noether operators and

Ind Nn =
n−1∑

j=0

Ind Kj .

Apply the results of a) and b), we obtain c). The theorem is proved.

3. Noether properties and the index formula of
linear operators induced by several algebraic elements

Let T1, T2, . . . , Tm be commutative algebraic elements with the char-
acteristic roots tjkj (kj = 1, . . . , nj ; j = 1, . . . , m) and let Pjkj (kj =
1, . . . , nj) be the projectors associated with Tj , j = 1, . . . , m.

Denote

(20)

Γ =
{
(i) = (i1, i2, . . . , im) | 0 ≤ ik ≤ nk − 1, k = 1, . . . , m

}
,

T = T1T2 . . . Tm,

T (i) = T i1
1 T i2

2 . . . T im
m ,

P(j) = P1j1P2j2 . . . Pmjm ,

t(j) = t1j1t2j2 . . . tmjm ,

t
(i)
(j) = ti11j1

ti22j2
. . . tim

mjm
, (i), (j) ∈ Γ,

Λ =
{
(j) ∈ Γ : P(j) 6= 0

}
.

In the sequel, we assume that

(21) t(i) 6= t(j) if (i) 6= (j), (i), (j) ∈ Λ

where (i) = (j) ⇔ ik = jk ∀k = 1, . . . , m. Consider the following opera-
tors

(22) K0 =
∑

(i)∈Γ

A(i)T
(i),

where
A(i) = Ai1i2...im ∈ L(X), (i) ∈ Γ.

Lemma 3.1 [6]. The following equalities hold:



NOETHER PROPERTIES OF LINEAR OPERATORS 379

a)
∑

(i)∈Λ

P(i) = I,

b) P(i)P(j) =
{

0 if (i) 6= (j)
P(j) if (i) = (j)

.

Lemma 3.2 The following equalities hold:
a) T k =

∑
(j)∈Λ

tk(j)P(j), k = 0, 1, . . . ;

b) TP(j) = t(j)P(j), (j) ∈ Λ.

Proof. We have

T =
m∏

i=1

Ti =
m∏

i=1

( ni∑

ji=1

tijiPiji

)

=
∑

ji=1,...,ni
i=1,...,m

t1j1t2j2 ...tmjmP1j1P2j2 . . . Pmjm ,

Hence

(23) T =
∑

(j)∈Λ

t(j)P(j).

From Lemma 3.1 and formula (23), we have

T k =
∑

(j)∈Λ

tk(j)P(j),

TP(j) =
( ∑

(i)∈Λ

t(i)P(i)

)
P(j)

= t(j)P(j), (j) ∈ Λ.

Lemma 3.3. T of the form (20) is an algebraic element with the charac-
teristic roots t(j), (j) ∈ Λ.

Proof. Let P (t) =
∏

(i)∈Λ

(t− t(i)), we have (see [4])

P (T ) =
∏

(i)∈Λ

(T − t(i)I) = 0.
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Let
P1(t) =

∏

(i)∈Λ\{(j)}
(t− t(i)), (j) ∈ Λ,

we shall show that P1(T ) 6= 0. Indeed,

P1(T ) =
∑

(k)∈Λ

∏

(i)∈Λ\{(j)}
(T − t(i)I)P(k)

=
∏

(i)∈Λ\{(j)}
(T − t(i)I)P(j)

=
∏

(i)∈Λ\{(j)}
(T − t(j)I + t(j)I − t(i)I)P(j)

=
∏

(i)∈Λ\{(j)}
(t(j) − t(i))P(j).

Since t(j) 6= t(i), if (j) 6= (i) ((i), (j) ∈ Λ), we have P1(T ) 6= 0. Thus

PT (t) = P (t) =
∏

(i)∈Λ

(t− t(i)).

Remark. The deteminant of the system

(24) T k =
∑

(i)∈Λ

tk(i)P(i), k = 0, ..., N − 1,

(where N is cardinality of Λ) with respect to the unknows P(i) ((i) ∈ Λ) is
the Vandermonde deteminant of the number t(i) ((i) ∈ Λ). Since t(i) 6= t(j)
if (i) 6= (j), the system (24) has a unique solution of the form

(25) P(i) =
N−1∑

k=0

c(i)kT k, (i) ∈ Λ,

where c(i)k are defined in terms of t(j) ((j) ∈ Λ), i ∈ Λ, k = 0, . . . , N −1.
K0 can be written in the form

(26) K0 =
N−1∑

k=0

BkT k,
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where Bk =
∑

(j)∈Λ

∑
(i)∈Γ

t
(i)
(j)c(j)kA(i) c(i)k is defined by (25). Indeed,

K0 =
∑

(i)∈Γ

A(i)T
(i)

=
∑

(i)∈Γ

A(i)

m∏

k=1

( nk∑

jk=1

tkjk
Pkjk

)ik

=
∑

(i)∈Γ

A(i)

m∏

k=1

( nk∑

jk=1

tik

kjk
Pkjk

)

=
∑

(i)∈Γ

A(i)

( ∑
jk=1,...,nk
k=1,...,m

ti11j1
ti22j2

...tim
mjm

P1j1P2j2 ...Pmjm

)

=
∑

(i)∈Γ

A(i)

( ∑

(j)∈Λ

t
(i)
(j)P(j)

)

=
∑

(j)∈Λ

( ∑

(i)∈Γ

t
(i)
(j)A(i)

)
P(j)

=
∑

(j)∈Λ

( ∑

(i)∈Γ

t
(i)
(j)A(i)

) N−1∑

k=0

c(j)kT k

=
∑

(j)∈Λ

N−1∑

k=0

( ∑

(i)∈Γ

t
(i)
(j)c(j)kA(i)

)
T k

=
N−1∑

k=0

( ∑

(j)∈Λ

∑

(i)∈Γ

t
(i)
(j)c(j)kA(i)

)
T k

=
N−1∑

k=0

BkT k.

The operator K0 of the form (26) is induced by an algebraic element
with the characteristic polynomial having single roots. Hence, applying
the results of §2, we shall obtain the Noether properties and the index
formula of K0.
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