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ON GROWTH FUNCTION OF PETRI NET

PHAM TRA AN

Abstract. In this paper we introduce the growth function of a Petri
net. We show that the growth function of any Petri net is bounded by a
certain polynomial. There are relations between the growth function and
the representative complexity of the language which is accepted by a Petri
net.

1. Introduction

Petri net was introduced in 1962 by C. Petri in connection with a theory
proposed to model the parallel and distributed processing systems. From
then onwards, the theory of Petri net was developed extensively by many
authors (see, for example, [4, 5, 13, 14]).

In a Petri net each place describes a local state, and each marking
describes a global state of the net. Since the number of tokens which may
be assigned to a place can be unbounded, there is an infinity of markings
for a Petri net. The set of all markings for a Petri net with n places is
simply the set Nn of all n-vectors. This set, although infinite, is of course
denumerable. From this point of view a Petri net could be seen as an
infinite state machine.

In order to study this infinite state machine, we propose a new tool:
the notion of state growth speed, which is called the growth function of
the machine. An analogous growth function for Lindenmayer systems was
earlier considered by some authors (see [10, 15]). As we shall see in the
sequel, in the theory of growth function only the state growth speed of the
system matters and no attention is paid to the states themselves. This
implies that many problems which are in general very hard for the infinite
state machine could become solvable for the growth function.The obtained
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results on growth function of Petri nets could shed some light to problems
concerning the capacity of Petri nets.

The purpose of this paper is to study the growth function of Petri nets
and its applications.

The definitions of Petri net and of Petri net language are recalled in
Section 2. Section 3 deals with the notion of growth function of a Petri net.
The main result of this part is the growth speed theorem which shows that
the growth function of any Petri net is bounded by a certain polynomial.
Section 4 is devoted to the relations between the growth function of a Petri
net and the representative complexity of the language which is accepted
by this Petri net.

2. Preliminaries

We first recall some necessary notions and definitions. For a finite
alphabet Σ, Σ∗ (resp. Σr, Σ≤r) denotes the set of all words (resp. of all
words of length r, of length at most r) on the alphabet Σ. The empty
word is denoted by Λ. For any word ω ∈ Σ∗, l(ω) denotes the length of
ω. Every subset L ⊆ Σ∗ is called a language over the alphabet Σ. Let N
be the set of all non-negative integers and N+ = N \ {0}.

Definition 1. A (free-labeled) Petri net N is given by a list

N = (P, T, I, O, µ0,Mf ),

where
P = {p1, . . . , pn} is a finite set of places;
T = {t1, . . . , tm} is a finite set of transitions, P ∩ T = ∅;
I : P × T → N is the input function;
O : T × P → N is the output function;
µ0 : P → N is the initial marking;
Mf = {µf1 , . . . , µfk

} is a finite set of final marking.

Definition 2. A marking µ (global state) of a Petri net N is a function

µ : P → N.

The marking µ can also be defined as a n-vector µ = (µ1, . . . , µn) with
µi = µ(pi) and |P | = n.

Definition 3. A transition t ∈ T is said to be firable at the marking µ if:

∀p ∈ P : µ(p) ≥ I(p, t).
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Let t be firable at µ and if t fires, then the Petri net N shall change its
state from the marking µ to a new marking µ′ which is defined as follows:

∀p ∈ P : µ′(p) = µ(p)− I(p, t) + O(t, p).

We set δ(µ, t) = µ′ and the function δ is said to be the function of changing
state of the net.

A firing sequence can be defined as a sequence of transitions such that
the firing of each its prefix will be led to a marking at which the following
transition will be firable. By FN we denote the set of all firing sequences
of N .

We now extend the function δ for a firing sequence by induction as
follows.

Let t ∈ T ∗, tj ∈ T, µ be a marking at which ttj is a firing sequence.
Then {

δ(µ, Λ) = µ,

δ(µ, ttj) = δ(δ(µ, t), tj).

Definition 4. The language acceptable by a (free-labeled) Petri net N is
the set

L(N ) =
{
t ∈ T ∗|(t ∈ FN ) ∧ (δ(µ0, t) ∈ Mf )

}
.

The set of all (free-labeled) Petri net languages is denoted by Lf .

3. The growth function of a Petri net

Let N = (P, T, I, O, µ0,Mf ) be a Petri net. We set

Sr =
{
µ|(∃t ∈ FN ) ∧ (t ∈ T r) ∧ µ = δ(µ0, t)

}
,

S≤r =
{
µ|(∃t ∈ FN ) ∧ (t ∈ T≤r) ∧ µ = δ(µ0, t)

}
,

which are the sets of all reachable markings of N by firing r, resp. at most
r transitions.

Definition 5. The growth functions hN , gN of a Petri net N are defined
by:

hN (r) = |Sr|,
gN (r) = |S≤r|.

Now we remark that an exact estimate of gN (r) or hN (r)will certainly be
a complicated function of r. However, it is almost the case that for large
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value of r, gN (r) or hN (r) can be closely approximated by a much simpler
function which tells us about the state of the growth speed of N .

In the sequel, we use the notations and definitions of the theory of
computational complexity:

Definition 6. If f and g are functions defined on the positive integers,
then

(1) f = O(g) if there is a C > 0 and an n0 > 0 such that |f(n)| ≤
C|g(n)| for all n ≥ n0,

(2) f = Ω(g) if g = O(f),
(3) f = Ω(C), where C is a class of functions, if f = Ω(g) for all g ∈ C.
The following theorem gives us an upper bound of the growth speed

for any Petri net.

Theorem 1 (The growth speed theorem). If N is a Petri net with m
transitions and n places, k = min{m,n} and Pk is any polynomial of
degree k, then

hN = O(Pk),

gN = O(Pk).

Thus the growth funtion of any Petri net is bounded by a certain poly-
nomial. This is an essential limitation of the Petri nets.

Proof. Let N = (P, T, I, O, µ0,Mf ) be a Petri net with |T | = m, |P | = n.
We now estimate |S≤r|. There are two ways for doing it.

Firstly, we prove that |S≤r| ≤ Pn(r) with |P | = n. Let

µ0 = (a1, . . . , an),

a = max ai, 1 ≤ i ≤ n,

l = max |O(tj , pi)− I(pi, tj)|, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Let t = tj1tj2 . . . tjp , p ≤ r, be any firing sequence of N . The function of
changing state by t can be determined as follows:

δ(µ0, tj1) = µ′ with

µ′(pi) = µ0(pi) + (O(tj1 , pi)− I(pi, tj1)),

µ′(pi) ≤ a + l, ∀pi ∈ P

δ(µ0, tj1 . . . tjp) = µ(p) with

µ(p)(pi) = µ(p−1)(pi) + (O(tjp , pi)− I(pi, tjp)),
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µ(p)(pi) ≤ a + p.l ≤ a + l.r, ∀pi ∈ P.

Therefore
|S≤r| ≤ (a + lr)n = Pn(r), ∀r ∈ N+.

Secondly, we show that |S≤r| ≤ Pm(r) with |T | = m. We define the
matrices I−, O+, D by

I−[j, i] = (I(pi, tj))m×n,

O+[j, i] = (O(tj , pi))m×n,

D = O+ − I−.

and set
e[j] = (0, · · · , 0, 1︸︷︷︸

j−th place

, 0, · · · , 0)1×m.

Let t = tj1tj2 . . . tjp , p ≤ r, be any firing sequence of N . Firing t, the
function of changing state is also determined by another way as follows:

δ(µ0, tj1) = µ′ = µ0 + e[j1]D,

δ(µ0, tj1 . . . tjp) = µ(p) = µ(p−1) + e[jp]D.

We obtain

δ(µ0, tj1 . . . tjp) = µ0 + e[j1]D + · · ·+ e[jp]D.

We set e[j]D = νj , j = 1, · · · ,m. Let fj be the number of occurences of
the transition tj in t. We can now express the function of changing state
in the form 




µ(p) = µ0 +
m∑

j=1

fjνj ,

m∑
j=1

fj ≤ r.

It follows that |S≤r| equals at most the number of the non-negative integral

solutions of the inequality
m∑

j=1

fj ≤ r. In [8] we have proved that this

number equals Cr
m+r =

(m + r)!
r!m!

≤ (m + r)m. Therefore

|S≤r| ≤ (m + r)m = Pm(r), ∀r ∈ N+.
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Combining the above estimates of |S≤r| we obtain

|S≤r| ≤ Pk(r), k = min{m,n}.

Finally, from the property |Sr| ≤ |S≤r|, ∀r ∈ N it follows that |Sr| ≤
Pk(r). So we obtain hN = O(Pk), gN = O(Pk).

Now we consider the growth function for some special classes of Petri
nets. Let S =

⋃
Sr, r ≥ 0. Then S is the set of all reachable markings of

net.
A Petri net N is safe if ∀µ ∈ S, ∀pi ∈ P : µ(pi) ≤ 1, i.e. the number

of token in any place is either 0 or 1. Safeness is an important property
of hardware devices. If |P | = n, then |S| ≤ 2n = C. Therefore for any
r ∈ N+,

hN (r) ≤ gN (r) ≤ C.

A Petri net is bounded if there exists a contant K such that for ∀µ ∈ S,
∀pi ∈ P : µ(pi) ≤ K. It is easy to see that if N is bounded and |P | = n,
then

|S| ≤ (K + 1)n = C.

Therefore, for any r ∈ N+ we also have

hN (r) ≤ gN (r) ≤ C.

A Petri net is conservative if ∀µ ∈ S, |P | = n :

n∑

i=1

µ(pi) =
n∑

i=1

µ0(pi).

Since µ0 is given,
n∑

i=1

µ0(pi) = K. This implies that µ(pi) ≤ K, i.e. N is

bounded and we also obtain

hN (r) ≤ gN (r) ≤ C.

Thus, the growth function of either a safe or bounded or conservative Petri
net is bounded by a contant.

4. The growth function and representative complexity

In [1, 3] we have examined the representative complexity of language
defined as follows.
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Let L ⊆ Σ∗. We define

x1E≤rx2(mod L) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σ≤r.

x1Erx2(modL) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σr.

It is easy to show that the relations E≤r(modL) and Er(mod L) are reflex-
ive, symmetric and transitive. Therefore, they are equivalence relations.

Let
GL(r) = RankE≤r(modL),

HL(r) = RankEr(modL).

be the representative complexity characteristics of the language L over Σ≤r

and Σr, respectively. There is a nice relation between the growth functions
of a Petri net and the representative complexities of the language which
is accepted by this Petri net.

Theorem 2 (The supply-demand theorem). Let L = L(N ), where N is
a Petri net. Then for any r ∈ N+,

HL(r) ≤ hN (r) + 1,

GL(r) ≤ gN (r) + 1.

Proof. We first extend the partial function δ to a total function over T≤r

by adding a new marking µε defined as follows:

δ̃(µ, x) = δ(µ, x)

if x is a firing sequence of N at µ,

δ̃(µ, x) = µε

if x is not a firing sequence of N at µ.
For all x ∈ T≤r, δ̃(µε, x) = µε /∈ Mf .
Set S̃≤r = S≤r ∪ {µε} and |S̃≤r| = |S≤r| + 1. We shall prove that if

L = L(N ) then GL(r) ≤ |S̃≤r|. Assume to the contrary that GL(r) >

|S̃≤r|. There exist x1, x2 ∈ T≤r such that x1E≤rx2(modL) but δ̃(µ0, x1) =
δ̃(µ0, x2). It follows from the last equation that both x1, x2 are (or are
not) firing sequences and we can verify that

∀ω ∈ T ∗ : x1ω ∈ L ↔ x2ω ∈ L.
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According to the definition, this implies that x1E≤rx2(modL) which con-
flicts with the hypothesis x1E≤rx2(modL). Therefore,

GL(r) ≤ |S̃≤r| = |S≤r|+ 1 = gN (r) + 1.

By an analogous argument we also obtain HL(r) ≤ hN (r) + 1.
Using the above relation we get some corollaries and applications.

Corollary 1. If L is a language with either HL = Ω(Pk) or GL =
Ω(Pk), where Pk is the class of all polynominals of degree k, then L is not
acceptable by any Petri net whose numbers of transitions and of places are
less than k.

Proof. Assume on the contrary that L is acceptable by a Petri net N with
k = min{|T |, |P |}. Applying the Theorem 2 and the Theorem 1 we obtain

HL(r) ≤ hN (r) + 1 = O(Pk),

GL(r) ≤ gN (r) + 1 = O(Pk).

This conflicts with the hypothesis either HL = Ω(Pk) or GL = Ω(Pk).
Therefore L is not acceptable by any Petri net whose numbers of transi-
tions and of places are less than k.

Corollary 2. If L is a language with either HL = Ω(P) or GL = Ω(P),
where P is the class of all polynominals, then L is not acceptable by any
Petri net.

Proof. The proof is analogous to the one of Corollary 1.
By Corollaries 1 and 2, we can give a lot of rather simple languages not

being acceptable by either any Petri net or a Petri net whose number of
transitions and number of places are less than a given contant.

Example 1. Let |Σ| = k ≥ 2, c /∈ Σ and

L =
{
xcx |x ∈ Σ+

}
.

It can be verified that if x1, x2 ∈ Σ≤r, x1 6= x2, then x1E≤rx2(modL).
Therefore

GL(r) = |Σ≤r| = k(kr − 1)
(k − 1)

= Ω(P).

According to Corollary 2, L is not acceptable by any Petri net.
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Example 2. Let Σ = {0, 1}, c /∈ Σ, k ≥ 2, and

Lk =
{
xcx |x ∈ Σ∗ , |x|1 = k

}
,

where |x|1 denotes the number of occurences of 1 in x. We shall prove
that for any r ≥ k, HLk

(r) ≥ Pk(r). Set:

Wr =
{
x ∈ Σ∗ | l(x) = r, |x|1 = k

}
,

where l(x) is the length of x. It is easy to show that

|Wr| = Ck
r =

r!
k!(r − k)!

=
r(r − 1) · · · (r − k + 1)

k!
= Pk(r).

For any x1, x2 ∈ Wr we prove that if x1 6= x2 then x1Erx2 (modLk). In
fact, if we choose ω = cx1, then x1ω = x1cx1 ∈ Lk, but x2ω = x2cx1 /∈ Lk.
It follows that x1Erx2 (modLk). Therefore,

HLk
(r) ≥ |Wr| = Pk(r).

According to Corollary 1, this implies that Lk is not acceptable by a Petri
net whose numbers of transitions and of places are less than k.

Theorem 3. Let N be a Petri net with gN (r) ≤ C, then L = L(N ) is
regular.

Proof. Recall that the Myhill-Nerode’s equivalence relation E(modL) is
defined by

x1Ex2(modL) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σ∗.

Let IL = Rank E(modL). Myhill and Nerode have proved that L is regular
if and only if IL ≤ C.

By Theorem 2, GL(r) ≤ gN (r) + 1. It follows that GL(r) ≤ C. Since
GL(r) is non-decreasing and bounded, there exists lim GL(r) = q, q =
const, when r → ∞. Since the values of GL(r) are integers, there is a
constant r0 such that ∀r ≥ r0 : GL(r) = q.

Assume to the contrary that L is not regular. By Myhill-Nerode’s the-
orem, IL = +∞. Therefore, there is an infinite sequence x1, x2, . . . , xk, . . .
with xi ∈ Σ∗, xi 6= xj and xiExj(modL). From this sequence we pick up
a finite sequence x1, x2, . . . , xq, xq+1 and set k = max

{
l(x1), . . . , l(xq+1)

}
.
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Choose r = max{k, r0}. Then xiE≤rxj(modL) for i 6= j. It follows that
GL(r) ≥ q + 1. Thus, there is r ≥ r0 with GL(r) 6= q. This contradicts
the property that ∀r ≥ r0, GL(r) = q. So L is regular.

Corollary 3. If the Petri net N is safe or bounded or conservative, then
L = L(N ) is regular.

Proof. We have proved that under the above assumption the growth func-
tion is bounded. According to Theorem 3, this implies that L(N ) is reg-
ular.
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