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ON CONJUGATE MAPS AND DIRECTIONAL
DERIVATIVES OF CONVEX VECTOR FUNCTIONS

NGUYEN XUAN TAN AND PHAN NHAT TINH

Abstract. In this paper, the concepts and the properties of conjugate
maps and directional derivatives of convex vector functions from a subset of
Rn to Rm with respect to a convex, closed and pointed cone are presented
on the base of the notions of Pareto-supremum and Pareto-infimum. Some
well-known results in the scalar case are generalized to the vector case. An
application of conjugate maps to the dual problem is shown.

1. Introduction

The directional derivative and the conjugate function of a scalar convex
function are basic concepts of convex analysis. They play an important
role in the optimization theory. In the vector case, different approaches
to conjugate maps were proposed by several authors. They can be cate-
gorized in three types:

(i) approach based on efficiency [4],
(ii) approach based on weak efficiency [5], [6],
(iii) approach based on strong supremum [7],

where the order in the spaces under consideration is assumed to be gen-
erated by the positive orthant.

In this paper, we shall consider the space Rm with the order generated
by a convex, closed and pointed cone. The Pareto-supremum of a subset
is defined as the Pareto-minimum of the set of the upper bounds. We
will obtain necessary and sufficient conditions for the Pareto-supremum
of a subset to be nonempty. By this, we define the notion of conjugate
maps of set-valued maps from Rn to Rm, which is an extension of (iii),
and obtain some results concerning the conjugate maps of convex vector
functions similar to the scalar case. In addition, based on the notions of
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Pareto-supremum and Pareto-infimum we define the notion of directional
derivative of a convex vector function and prove several results extending
those in the scalar case.

The paper is organized as follows. In the next section, we introduce
the concept of Pareto-supremum and Pareto-infimum of subsets of Rm

with respect to an order generated by a convex cone. Necessary and suf-
ficient conditions for the existence of supremum and infimum are estab-
lished. Some basic properties of the supremum and infimum sets, which
are needed in the sequel, are also presented. Section 3 is devoted to con-
jugate maps of convex vector functions. We define conjugate maps in a
standard way and investigate their properties, especially the extension of
the Fenchel-Moreau Theorem to the vector case. Section 4 deals with
directional derivatives of convex vector functions. As in the scalar case,
we show that the directional derivative of a convex vector function f at
x ∈ ri(domf) coincides with the support map of the set ∂f(x). The last
section is intended to give an application of the conjugate maps to the dual
problems of vector optimization problems. We establish a weak duality
theorem for the dual problem by using the conjugate maps.

2. Supremum and Infimum

Let C ⊆ Rm be a convex cone. Define a partial order ′ º′C on Rm as
follows.

x, y ∈ Rm, x ºC y ⇔ x− y ∈ C.

Sometimes we write ′ º′ instead of ′ º′C if it is clear which cone is under
consideration. We recall the following definition.

Definition 2.1 ([1, Chapter 2, Definition 2.1]). Let A ⊆ Rm be nonempty.
We say that

i) x ∈ A is an ideal minimal point of A with respect to C if x ¹C y,
for every y ∈ A. The set of all ideal minimal points of A is denoted by
IMin(A|C).

ii) x ∈ A is a Pareto-minimal point of A with respect to C if y ¹C x,
for some y ∈ A, then x ¹C y. The set of all Pareto-minimal points of A
is denoted by Min(A|C).

The concepts of IMax and Max are defined dually.
The cone C is said to be pointed if C ∩ (−C) = {0}. The following

result from [1] will be needed in the sequel.

Lemma 2.2 [1, Chapter 2, Definition 2.2]. If IMin(A|C) 6= ∅, then
IMin(A|C)= Min(A|C) and it is a point whenever C is pointed.
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Let A ⊆ Rm be nonempty. We say that x ∈ Rm is an upper bound
of A with respect to C if x ºC y, for every y ∈ A. The set of all upper
bounds of A is denoted by Ub(A|C).

The concept of lower bound is defined dually. The set of all lower
bounds of A with respect to C is denoted by Lb(A|C). We say that A is
bounded above (below) with respect to C if Ub(A|C) 6= ∅ (Lb(A|C) 6= ∅).

The concept of supremum is defined as follows.

Definition 2.3. Let A ⊆ Rm be nonempty. We say that
i) x ∈ Rm is an ideal supremal point of A with respect to C if x ∈

Ub(A|C) and x ¹C y, for every y ∈ Ub(A|C). The set of all ideal supremal
points of A is denoted by ISup(A|C).

ii) x ∈ Rm is a Pareto-supremal point of A with respect to C if x ∈
Ub(A|C) and y ¹C x for some y ∈ Ub(A|C) implies x ¹C y. The set of
all Pareto-supremal points of A is denoted by Sup(A|C).

The concepts of IInf and Inf are defined dually. Sometimes we write
IMinA, MinA, ISupA, SupA,... instead of IMin(A|C), Min(A|C), ISup(A|C),
Sup(A|C),... if it is clear which cone is under consideration.

Remark 2.4. i) From definition we have

ISupA = IMin(UbA).

SupA = Min(UbA).

IInfA = IMax(LbA).

InfA = Max(LbA).

ii) When m = 1 and C = R+, the concepts of ISup (IInf) and Sup
(Inf) are equivalent and they are precisely the usual concept of supremum
(infimum) in R.

The following simple result will be needed in the sequel

Lemma 2.5. Let A be a nonempty subset of Rm. Then
i) LbA = −Ub(−A).
ii) InfA = −Sup(−A).
iii) IInfA = −ISup(−A).

Proof. This is immediate from definition.

Lemma 2.6. Let A be a nonempty subset of Rm. If ISupA 6= ∅, then
ISupA= SupA and it is a point whenever C is pointed.

Proof. This is immediate from Remark 2.4 and Lemma 2.2.
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From now on, the cone C is assumed to be convex, closed and pointed.
As usual, we shall write x Â y whenever x º y and x 6= y, for every
x, y ∈ Rm. When intC 6= ∅, we write x À y if x − y ∈intC. To simplify
the presentation, sometimes a set which has only one element is identified
with that element.

Now, we shall establish necessary and sufficient conditions for the ex-
istence of supremum and infimum.

A sequence (xk) ⊆ Rm is said to be increasing if

xk+1 º xk, (∀k ∈ N).

A sequence (xk) ⊆ Rm is said to be bounded from above if the set
{xk : k ∈ N} is bounded from above.

Lemma 2.7. If a sequence (xk) ⊆ Rm is convergent and bounded above
by a ∈ Rm, then limxk ¹ a.

Proof. Since (xk) ⊆ a− C and C is closed, lim xk ∈ a− C. Hence

lim xk ¹ a.

Lemma 2.8. If a sequence (xk) ⊆ Rm is increasing and bounded from
above then it is convergent and

lim xk = ISup{xk : k ∈ N}.

Proof. Let a be an arbitrary upper bound of {xk : k ∈ N}. Then

(xk) ⊆ (x1 + C) ∩ (a− C).

By [1, Chapter 1, Proposition 1.8], (x1 + C) ∩ (a − C) is compact. Then
there exists a convergent subsequence (xkl

) ⊆ (xk). Put x = lim
l→∞

xkl
.

Since (xkl
)l is increasing then, for every l, p ∈ N , we have

xkl+p
∈ xkl

+ C.

Let p →∞. Since C is closed,

x ∈ xkl
+ C.
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Hence,

(1) x ∈ xk + C, (∀k ∈ N).

Let ε > 0 be given. Since xkl
→ x, by [1, Chapter 1, Proposition 1.8],

there exists L ∈ N such that

(xkL + C) ∩ (x− C) ⊆ B(x, ε).

Set K = kL. Then for every k > K, one has

xk ∈ (xK + C) ∩ (x− C) ⊆ B(x, ε).

Hence, lim xk = x.
Finally, from (1) and Lemma 2.7 it implies x = ISup{xk : k ∈ N}. The

proof is complete.

Proposition 2.9. Let A be a nonempty and linearly ordered subset of
Rm. Then ISupA 6= ∅ if and only if A is bounded from above.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, since C is convex,
closed and pointed, by [1, Chapter 1, Proposition 1.10], intC ′ 6= ∅. Let
ξ ∈ intC ′. One has

(2) ξ(c) > 0, (∀c ∈ C \ {0}).

Pick any a ∈ UbA. Then ξ(x) ≤ ξ(a), for every x ∈ A. Hence Supξ(A) <
+∞. Therefore, we can find a sequence (xk) ⊆ A such that (ξ(xk)) is in-
creasing and lim ξ(xk) = Supξ(A). Since A is linearly ordered, by (2), (xk)
is increasing. From Lemma 2.8, (xk) converges and lim xk = ISup{xk}.
By Lemma 2.7, ISup{xk} ¹ a. We shall show ISup{xk} ∈ UbA and this
will complete the proof. Indeed, let x ∈ A be arbitrary. Since A is linearly
ordered, one of the following two cases holds.

i) There exists k such that x ¹ xk. In this case, obviously x ¹
ISup{xk}.

ii) x Â xk, for every k ∈ N . By Lemma 2.7, ISup{xk} ¹ x. Observe
that ξ(x) = Supξ(A) = ξ(ISup{xk}). Then by (2), x = ISup{xk}.

Thus x ¹ ISup{xk} for every x ∈ A. The Proposition is proved.

Remark 2.10. From the proof of Proposition 2.9, we see that if a
nonempty, linearly ordered subset A of Rm is bounded from above then
there exists an increasing sequence (xk) ⊆ A converging to ISupA.
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Corollary 2.11. Let A be a nonempty and linearly ordered subset of Rm.
Then IInfA 6= ∅ if and only if A is bounded below.

Proof. This is immediate from Proposition 2.9 and Lemma 2.5.

The following lemma characterizes ISup and IInf of linearly ordered
subsets.

Proposition 2.12. Let A be a nonempty, linearly ordered subset of Rm.
Then

i)

a = ISupA ⇔
{

a ∈ UbA.

A ∩B(a, ε) 6= ∅, (∀ε > 0).

ii)

b = IInfA ⇔
{

b ∈ LbA.

A ∩B(b, ε) 6= ∅, (∀ε > 0).

Proof. i) The ‘only if’ part is immediate from Remark 2.10. For the ‘if’
part, let x ∈ UbA be arbitrary. From the hypothesis, there is a sequence
(ak) ⊆ A converging to a. Since (ak) ⊆ x−C and since C is closed, a ¹ x.
Hence, a = ISupA.

ii) This is immediate from i) and Lemma 2.5.
The proof is complete.

When intC 6= ∅ Proposition 2.12 can be rewritten as follows.

Proposition 2.13. Assume that intC 6= ∅ and A is a nonempty, linearly
ordered subset of Rm. Then

i)

a = ISupA ⇔
{

a ∈ UbA.

∀c À 0, ∃x ∈ A such that x À a− c.

ii)

b = IInfA ⇔
{

b ∈ LbA.

∀c À 0, ∃x ∈ A such that x ¿ b + c.

Proof. i) For the ‘only if’ part, pick any c À 0. Then a ∈ int(a− c + C).
Hence, by Proposition 2.12, there exists x ∈ A such that x ∈ int(a−c+C),
i.e. x À a− c.

For the ‘if’ part, let ε > 0 be arbitrary. From [1, Chapter 1, Proposition
1.8], there exists c À 0 such that

(a− c + C) ∩ (a− C) ⊆ B(a, ε).
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By the hypothesis, A∩ [(a− c+C)∩ (a−C)] 6= ∅. Hence, A∩B(a, ε) 6= ∅.
Then by Proposition 2.12, a = ISupA.

ii) This is immediate from i) and Lemma 2.5.
The proof is complete.

Corollary 2.14. Let S ⊆ R be nonemty and bounded from above. Then
for every c ∈ C, we have

ISup(Sc) = (SupS)c.

Proof. This is immediate from Proposition 2.12.
Now, let g be a function from (α, β) ⊆ R to Rm. We say that g is

increasing on (α, β) if for every t, t′ ∈ (α, β), one has

t ≤ t′ ⇒ g(t) ¹ g(t′).

Corollary 2.15. Let g : (α, β) ⊆ R → Rm be increasing and bounded.
Then the limits lim

t↓α
g(t), lim

t↑β
g(t) exist and

lim
t↓α

g(t) = IInf
t∈(α,β)

g(t).

lim
t↑β

g(t) = ISup
t∈(α,β)

g(t).

Proof. The set {g(t) : t ∈ (α, β)} is linearly ordered and bounded below
then by Corollary 2.11, there exists IInf

t∈(α,β)
g(t). Put a = IInf

t∈(α,β)
g(t). Let

ε > 0 be given. From [1, Chapter 1, Proposition 1.8], there is ε′ > 0 such
that

(B(a, ε′) + C) ∩ (B(a, ε′)− C) ⊆ B(a, ε).

By Proposition 2.12, there exists t0 ∈ (α, β) such that g(t0) ∈ B(a, ε′).
Then for every t ∈ (α, t0), one has

g(t) ∈ (a + C) ∩ (g(t0)− C) ⊆ (B(a, ε′) + C) ∩ (B(a, ε′)− C) ⊆ B(a, ε).

Thus, lim
t↓α

g(t) = IInf
t∈(α,β)

g(t).

Similarly, we have lim
t↑β

g(t) = ISup
t∈(α,β)

g(t). The proof is complete.

The following theorem is the main result of this section.



322 NGUYEN XUAN TAN AND PHAN NHAT TINH

Theorem 2.16. Let A be a nonempty subset of Rm. Then SupA 6= ∅ if
and only if A is bounded from above.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, let b ∈ UbA be
arbitrary. Put B = UbA ∩ (b − C). Since MinB ⊆ Min(UbA) then to
complete the proof it remains to show MinB 6= ∅. Indeed, let S be a
nonempty and linearly ordered subset of B. Pick any x ∈ A, one has

S ⊆ (x + C) ∩ (b− C).

Then by Corollary 2.11, there exists IInfS. Since C is closed then by
Proposition 2.12, IInfS ∈ (x+C)∩(b−C), for every x ∈ A, i.e., IInfS ∈ B.
Hence, by Zorn’s lemma, MinB 6= ∅. The theorem is proved.

Corollary 2.17. Let A be a nonempty subset of Rm. Then IInfA 6= ∅ if
and only if A is bounded below.

Proof. This is immediate from Theorem 2.16 and Lemma 2.5.

Remark 2.18. From the proof of Theorem 2.16 and Lemma 2.5, for every
nonempty subset A of Rm, one has

UbA = SupA + C.(3)

LbA = InfA− C.(4)

Corollary 2.19. Let A be a nonempty subset of Rm. Then
i) If SupA 6= ∅ and has only one element then SupA = ISupA.
ii) If InfA 6= ∅ and has only one element then InfA = IInfA.

Proof. This is immediate from (3) and (4).

The rest of this section is intended to establish some basic properties
of supremum and infimum which will be needed in the sequel.

Proposition 2.20. Let A be a nonempty subset of Rm. Then
i) UbA is closed and convex.
ii) UbA = Ub(coA).
iii) SupA = Sup(coA).
iv) ISupA = ISup(coA).
(Here coA denotes the closure of the convex hull of A.)

Proof. i) This is immediate from definitions and from the fact C is closed.
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ii) It is clear that Ub(coA) ⊆ UbA. For the converse inclusion, let
a ∈ UbA be arbitrary. Then A ⊆ (a − C). Since C is closed and convex,
coA ⊆ (a− C), i.e. a ∈ Ub(coA).

iii) This is immediate from the definition of Sup and ii).
iv) This is immediate from iii) and Corollary 2.19.

Corollary 2.21. Let A ⊆ Rm. If UbA ∩ coA is nonempty then

UbA ∩ coA = ISupA.

Proof. From Proposition 2.20, one has

UbA ∩ coA = Ub(coA) ∩ coA.

Since C is pointed and UbA ∩ coA 6= ∅,

Ub(coA) ∩ coA = ISupcoA

Hence, by Proposition 2.20,

UbA ∩ coA = ISupA.

The proposition is proved.

Proposition 2.22. Let A,B be nonempty subsets of Rm. Then
i) Sup(tA) = tSupA, for every t > 0.
ii) If A ⊆ B then SupB ⊆ SupA + C.
iii) SupA+SupB ⊆ Sup(A+B)+C. If in addition, ISupA∪ISupB 6= ∅,

then
SupA + SupB = Sup(A + B).

Proof. i) Let a ∈ SupA be arbitrary. Then ta ∈ Ub(tA). Pick b ∈ Ub(tA)

with b ¹ ta. Then
b

t
∈ UbA and

b

t
¹ a. Since a ∈ SupA,

b

t
= a. Hence,

ta ∈ Sup(tA). Thus, tSupA ⊆ Sup(tA). Replace A, t by tA,
1
t
, one has

1
t
Sup(tA) ⊆ SupA.

Hence, Sup(tA) ⊆ tSupA.
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ii) This is immediate from the fact SupB ⊆ UbB ⊆ UbA and from the
equality UbA = SupA + C.

iii) The inclusion follows from the facts SupA + SupB ⊆ Ub(A + B)
and Ub(A + B) ⊆ Sup(A + B) + C. To prove the equality, without loss of
generality we may assume that ISupA 6= ∅. By Lemma 2.6, SupA = ISupA
and it is a point. Let b ∈ SupB be arbitrary. Then SupA+b ∈ Ub(A+B).
Pick x ∈ Ub(A + B) such that

(5) x ¹ SupA + b.

One has x º y + z, for every y ∈ A, z ∈ B. Hence, x− z ∈ UbA, for every
z ∈ B. Since UbA = SupA + C, x − z º SupA, for every z ∈ B. Hence,
we have x− SupA ∈ UbB. b ∈ SupB. This and (5) imply x = SupA + b.
Therefore, SupA + b ∈ Sup(A + B).

Conversely, let x ∈ Sup(A + B) be arbitrary. By a similar proof, one
has x− SupA ∈ UbB. Pick b ∈ UbB such that

b ¹ x− SupA.

Then SupA + b ∈ Ub(A + B) and SupA + b ¹ x. Since x ∈ Sup(A + B)
then x = SupA + b. Hence, x− SupA ∈ SupB. The proposition is proved.

Proposition 2.23. Let A be a nonempty subset of Rm and a ∈ Rm. If
ξ(a) = Supξ(A), for every ξ ∈ C ′, then

a = ISupA.

Proof. For every ξ ∈ C ′, x ∈ A, one has ξ(a) ≥ ξ(x). Hence, a º x.
This means that a ∈ UbA. Now, let b ∈ UbA be arbitrary. Then b º x,
for every x ∈ A. Hence, ξ(b) ≥ Supξ(A) = ξ(a), for every ξ ∈ C ′. This
implies that b º a. Hence, a = ISupA. The proof is complete.

Remark 2.24. We note that the duals to Proposition 2.20 to Proposition
2.23 for Infimum are also true.

3. Conjugate maps

Let F : Rn−→−→Rm be a set-valued map. We recall that the C-epigraph
of F is defined as the set

epiF := {(x, y) ∈ Rn ×Rm : y ∈ F (x) + C}.
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The domain of F is defined as the set

domF := {x ∈ Rn : F (x) 6= ∅}.

F is said to be convex (closed) with respect to C if epiF is convex (closed).
It is easy to see that F is convex if and only if for every x, y ∈ Rn, λ ∈

[0, 1], one has

λF (x) + (1− λ)F (y) ⊆ F (λx + (1− λ)y) + C.

If f is a vector function from a subset D ⊆ Rn to Rm then we shall identify
f with the following set-valued map

F (x) =
{ {f(x)}, x ∈ D,

∅, x /∈ D.

Definition 3.1. Let F : Rn−→−→Rm be a set-valued map with domF 6= ∅.
The conjugate map of F is a set-valued map from L(Rn, Rm) to Rm defined
by

F ∗(A) := Sup
⋃

x∈Rn

[A(x)− F (x)], A ∈ L(Rn, Rm),

where L(Rn, Rm) denotes the space of linear maps from Rn to Rm.

Definition 3.2. Let F : Rn−→−→Rm be a set-valued map with domF ∗ 6= ∅.
The biconjugate map of F is a set-valued map from Rn to Rm defined by

F ∗∗(x) := Sup
⋃

A∈L(Rn,Rm)

[A(x)− F ∗(A)], x ∈ Rn.

Example 3.3. i) Let S ⊆ Rn. The indicator map of S is a set-valued
map from Rn to Rm defined by

IS(x) :=
{ {0}, x ∈ S,

∅, x /∈ S.

The support map of S is a set-valued map from L(Rn, Rm) to Rm defined
by

Supp(S|A) := Sup{A(x) : x ∈ S}, A ∈ L(Rn, Rm).
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One has
(IS)∗ = Supp(S|.).

ii) Let B ∈ L(Rn, Rm), a ∈ Rm. Consider the affine function

F (x) = B(x) + a.

We have

F ∗(A) :=
{ {−a}, A = B,

∅, A 6= B.

The following proposition presents some calculus rules for conjugate
maps.

Proposition 3.4. Let F : Rn−→−→Rm be a set-valued map with domF 6= ∅.
Then

i) (F + a)∗(A) = F ∗(A)− a, (∀a ∈ Rm, A ∈ L(Rn, Rm)).
ii) (tF )∗(A) = tF ∗(A

t ), (∀t > 0, A ∈ L(Rn, Rm)).
iii) (F (. + b))∗(A) = F ∗(A)−A(b), (∀b ∈ Rn, A ∈ L(Rn, Rm)).

Proof. i) Let a ∈ Rm, A ∈ L(Rn, Rm) be arbitrary. From the definition
and Proposition 2.22, one has

(F + a)∗(A) = Sup
⋃

x∈Rn

[A(x)− F (x)− a]

= Sup((
⋃

x∈Rn

[A(x)− F (x)])− a)

= (Sup
⋃

x∈Rn

[A(x)− F (x)])− a

= F ∗(A)− a.

ii) Let t > 0, A ∈ L(Rn, Rm) be arbitrary. From the definition and
Proposition 2.22, one has

(tF )∗(A) = Sup
⋃

x∈Rn

[A(x)− tF (x)]

= Supt
⋃

x∈Rn

[A

t
(x)− F (x)

]

= tSup
⋃

x∈Rn

[A

t
(x)− F (x)

]

= tF ∗
(A

t

)
.
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iii) Let b ∈ Rn, A ∈ L(Rn, Rm) be arbitrary. From definition and
Proposition 2.22, one has

(F (. + b))∗(A) = Sup
⋃

x∈Rn

[A(x)− F (x + b)]

= Sup
⋃

x∈Rn

[A(x + b)− F (x + b)−A(b)]

=
(
Sup

⋃

x∈Rn

[A(x + b)− F (x + b)]
)
−A(b)

= F ∗(A)−A(b).

The proof is complete.

Now, we shall establish some basic properties of conjugate maps.

Proposition 3.5. Let F : Rn−→−→Rm be a set-valued map with domF 6= ∅.
Then

i) F ∗ is convex and closed.
ii) If domF ∗ 6= ∅ then

F (x) ⊆ F ∗∗(x) + C, (∀x ∈ Rn).

Proof. i) For every A,B ∈ L(Rn, Rm), λ ∈ [0, 1], from the definiton and
Proposition 2.22, one has

λF ∗(A) + (1− λ)F ∗(B)

= λSup
⋃

x∈Rn

[A(x)− F (x)] + (1− λ)Sup
⋃

x∈Rn

[B(x)− F (x)]

= Sup
⋃

x∈Rn

[λA(x)− λF (x)] + Sup
⋃

x∈Rn

[(1− λ)B(x)− (1− λ)F (x)]

⊆ Sup
( ⋃

x∈Rn

[λA(x)− λF (x)] +
⋃

x∈Rn

[(1− λ)B(x)− (1− λ)F (x)]
)

+ C.

Since

⋃

x∈Rn

[(λA + (1− λ)B)(x)− F (x)]

⊆
⋃

x∈Rn

[λA(x)− λF (x)] +
⋃

x∈Rn

[(1− λ)B(x)− (1− λ)F (x)]
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then by Proposition 2.22, we have

Sup
( ⋃

x∈Rn

[λA(x)− λF (x)] +
⋃

x∈Rn

[(1− λ)B(x)− (1− λ)F (x)]
)

+ C

⊆ Sup
⋃

x∈Rn

[(λA + (1− λ)B)(x)− F (x)] + C

= F ∗(λA + (1− λ)B) + C.

Hence, F ∗ is convex.
Now, assume that a sequence (Ak, yk) ⊆ epiF ∗ converges to some

(A, y) ∈ L(Rn, Rm) × Rm. For every x ∈ domF, z ∈ F (x), from the
definition of conjugates, one has

yk º Ak(x)− z, (∀k ∈ N).

Let k →∞, since C is closed, y º A(x)− z. Hence,

y ∈ Sup
⋃

x∈Rn

[A(x)− F (x)] + C = F ∗(A) + C.

This means that (A, y) ∈ epiF ∗.
ii) Let x ∈ Rn be arbitrary. If x /∈ domF then the inclusion is obvious.

Now, assume that x ∈ domF . Pick any A ∈ domF ∗. From Lemma 2.5
and Remark 2.24, we have

A(x)− F ∗(A) = A(x)− Sup
⋃

z∈Rn

[A(z)− F (z)]

= Inf(A(x)−
⋃

z∈Rn

[A(z)− F (z)]).

Since F (x) ⊆ A(x)− ⋃
z∈Rn

[A(z)− F (z)],

F (x) ⊆ Ub(A(x)− F ∗(A)).

Since this is true for every A ∈ domF ∗ then

F (x) ⊆ Ub
⋃

A∈domF∗
[A(x)− F ∗(A)]

= Sup
⋃

A∈domF∗
[A(x)− F ∗(A)] + C

= F ∗∗(x) + C.
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The proposition is proved.
Let f be a convex vector function from a nonempty subset D ⊆ Rn to

Rm. The subdifferential of f at x ∈ D is defined as the set

∂f(x) := {A ∈ L(Rn, Rm) : f(y)− f(x) º A(y − x), for every y ∈ D}.

Proposition 3.6. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm and let x ∈ D,A ∈ L(Rn, Rm). Then A ∈ ∂f(x) if
and only if f∗(A) = A(x)− f(x).

Proof. From the definition of subdifferential and Corollary 2.21, one has

A ∈ ∂f(x) ⇔ A(x)− f(x) º A(y)− f(y), (∀y ∈ D)

⇔ A(x)− f(x) = ISup
⋃

y∈D

{A(y)− f(y)}

⇔ A(x)− f(x) = f∗(A).

The proof is complete.

Lemma 3.7. Let F be a set-valued map from Rn to Rm such that there
exists IInfF (x) for every x ∈ domF . If F is convex then IInfF is convex
on domF .

Proof. For every x, y ∈ domF, λ ∈ [0, 1], by Remark 2.24 and Corollary
2.19, one has

λIInfF (x) + (1− λ)IInf F (y) = IInf [λF (x)] + IInf [(1− λ)F (y)]

= IInf [λF (x) + (1− λ)F (y)].

By the convexity of F , λF (x) + (1 − λ)F (y) ⊆ F (λx + (1 − λ)y) + C.
Hence,

IInf F (λx + (1− λ)y) ∈ Lb [λF (x) + (1− λ)F (y)]

= IInf [λF (x) + (1− λ)F (y)]− C.

Therefore, λIInf F (x)+(1−λ)IInf F (y) º IInf F (λx+(1−λ)y). The proof
is complete.

Lemma 3.8. Let F : Rn−→−→Rm be a set-valued map with domF 6= ∅ such
that there exists IInfF (x) for every x ∈ domF . Then

F ∗ = (IInfF )∗.
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Proof. Let A ∈ L(Rn, Rm) be arbitrary. By Lemma 2.5, Lemma 2.6 and
Proposition 2.22, for every x ∈ domF , one has

A(x)− IInfF (x) = ISup[A(x)− F (x)].

Hence,

y ∈ Ub
( ⋃

x∈domF

[A(x)− IInfF (x)]
)

⇔ y ∈ Ub(A(x)− IInfF (x)), (∀x ∈ domF )

⇔ y ∈ Ub(ISup[A(x)− F (x)]), (∀x ∈ domF )

⇔ y ∈ Ub(A(x)− F (x)), (∀x ∈ domF )

⇔ y ∈ Ub
( ⋃

x∈domF

[A(x)− F (x)]
)
.

Therefore

Ub
( ⋃

x∈domF

[A(x)− IInfF (x)]
)

= Ub
( ⋃

x∈domF

[A(x)− F (x)]
)
.

This implies that

(IInfF )∗(A) = Sup
( ⋃

x∈domF

[A(x)− IInfF (x)]
)

= Min

(
Ub

( ⋃

x∈domF

[A(x)− IInfF (x)]
))

= Min

(
Ub

( ⋃

x∈domF

[A(x)− F (x)]
))

= Sup
( ⋃

x∈domF

[A(x)− F (x)]
)

= F ∗(A).

The proof is complete.

Corollary 3.9. Let F be a convex set-valued map from Rn to Rm such
that there exists IInfF (x) for every x ∈ domF and let x ∈ domF, A ∈
L(Rn, Rm). Then A ∈ ∂IInfF (x) if and only if F ∗(A) = A(x)− IInfF (x).
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Proof. This is immediate from Proposition 3.6, Lemma 3.7 and Lemma
3.8.

Proposition 3.10. Let f be a vector function from a nonempty subset
D ⊆ Rn to Rm. Then f∗(A) is bounded below for every A ∈ domf∗ and,
if f is convex, domf∗ 6= ∅.
Proof. Let A ∈ domf∗ be arbitrary. Pick any x ∈ D, one has

A(x)− f(x) ∈ Lb
(
Sup

⋃

y∈D

{A(y)− f(y)}
)

= Lb(f∗(A)).

This means that f∗(A) is bounded below.
Now, assume that f is convex. Let x ∈ riD. By Theorem 4.12 in [2],

∂f(x) 6= ∅. Pick any A ∈ ∂f(x). By Proposition 3.6, f∗(A) = A(x)−f(x).
Hence, domf∗ 6= ∅. The proof is complete.

Corollary 3.11. Let F be a set-valued map from Rn to Rm with domF 6=
∅ such that there exists IInfF (x) for every x ∈ domF . Then F ∗(A) is
bounded below for every A ∈ domF ∗ and domF ∗ 6= ∅ whenever F is
convex.

Proof. This is immediate from Proposition 3.10 , Lemma 3.7 and Lemma
3.8.

Proposition 3.12. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm. If D is closed then

domf∗∗ = D.

Proof. By Proposition 3.5, D ⊆ domf∗∗. Assume in the contrary that
domf∗∗ 6= D. Then there exists x0 ∈ domf∗∗ such that x0 /∈ D. By the
separation theorem, one can find a functional ξ ∈ L(Rn, R) such that

(6) ξ(x0) > Sup
x∈D

ξ(x).

Let y0 ∈ riD, by Theorem 4.12 in [2], ∂f(y0) 6= ∅. Pick any point A0 ∈
∂f(y0). By Proposition 3.6, f∗(A0) reduces to a singleton. For every
c ∈ C, define a linear map βc : R → Rm as follows.

βc(t) = tc, (∀t ∈ R).
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From Corollary 2.19 and Proposition 2.22, one has

f∗(A0) + Sup
x∈D

(βcξ)(x) = Sup
⋃

x∈D

{A0(x)− f(x)}+ Sup
x∈D

(βcξ)(x)

= Sup
( ⋃

x∈D

{A0(x)− f(x)}+
⋃

x∈D

{βcξ)(x)}
)

⊆ Sup
⋃

x∈D

{A0(x)− f(x) + βcξ)(x)}+ C

= f∗(A0 + βcξ) + C.

Observe that

Sup
x∈D

(βcξ)(x) = βc(Sup
x∈D

ξ(x))

= (Sup
x∈D

ξ(x)).c.

Hence, there exists yc ∈ f∗(A0 + βcξ) such that

f∗(A0) + (Sup
x∈D

ξ(x)).c º yc.

Let z ∈ f∗∗(x0). From the definition of f∗∗, one has

z º (A0 + βcξ)(x0)− yc

º [A0(x0)− f∗(A0)] + [ξ(x0)− Sup
x∈D

ξ(x)].c,

for all c ∈ C. By (6), this is impossible. Thus, domf∗∗ = D. The proof is
complete.

Corollary 3.13. Let F be a convex set-valued map from Rn to Rm with
domF 6= ∅ such that there exists IInfF (x) for every x ∈ domF . If domF
is closed then

domF ∗∗ = domF.

Proof. This is immediate from Proposition 3.12, Lemma 3.7 and Lemma
3.8.

The rest of this section is intended to generalize the Fenchel-Moreau
Theorem to the vector case.
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Let f be a convex vector function from a nonempty subset D ⊆ Rn

to Rm. We say that f satisfies condition (H) at x ∈ D if there is some
x0 ∈ riD such that

f(x) = lim
λ↑1

f(λx + (1− λ)x0).

Obviously, if f is continuous at x ∈ D then f satisfies the condition (H)
at x. We note that the converse conclusion is not true in general. When
m = 1 and f is closed then by [3, Chapter 2, Corollary 7.5.1], f satisfies
the condition (H) at every x ∈ D. Furthermore, we have

Proposition 3.14. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm. If f is subdifferentiable at x ∈ D, then f satisfies
the condition (H) at x.

We need the following lemma.

Lemma 3.15. Let g : [0, 1] → R be convex. If g is subdifferentiable at 1
then

lim
t↑1

g(t) = g(1).

Proof. By the convexity of g, the limit lim
t↑1

g(t) exists. Pick any A ∈ ∂g(1).

Then for every t ∈ [0, 1], one has g(t)− g(1) ≥ A(t− 1). Hence,

lim
t↑1

g(t) ≥ g(1).

By the convexity of g, this implies that

lim
t↑1

g(t) = g(1).

The proof is complete.

Proof of Proposition 3.14. Let x0 ∈ riD. For every ξ ∈ C ′, we define a
function fξ : [0, 1] → R as follows.

fξ(t) = ξf(tx + (1− t)x0).

Obviously, fξ is convex on [0, 1]. Pick any A ∈ ∂f(x) and put

Aξ(t) = tξA(x− x0), (∀t ∈ R).
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A direct verification shows that Aξ ∈ ∂fξ(1), i.e. fξ is subdifferentiable at
1. By Lemma 3.15, one has

lim
t↑1

ξf(tx + (1− t)x0) = lim
t↑1

fξ(t)

= fξ(1)

= ξf(x).

Since C is closed, convex and pointed, intC ′ 6= ∅. Hence,

lim
t↑1

ξf(tx + (1− t)x0) = ξf(x), for all ξ ∈ L(Rm, R).

This implies that
lim
t↑1

f(tx + (1− t)x0) = f(x).

The proof is complete.

Lemma 3.16. Let f be a convex vector function from a subset D ⊆ Rn

to Rm and let x ∈ D. Assume that there exists x0 ∈ riD such that
f(x) = lim

t↑1
f(tx + (1 − t)x0), (i.e., f satisfies condition (H) at x.). Then

for every sequence ((Ak, xk))k ⊆ L(Rn, Rm) × [x0, x] such that xk → x
and Ak ∈ ∂f(xk), one has

lim
k→∞

Ak(x− xk) = 0.

Proof. For every ξ ∈ C ′, we define a function fξ from [0,1] to R as follows.

fξ(t) = ξf(tx + (1− t)x0).

Obviously, fξ is convex on [0,1].
For every k ≥ 1, represent xk as xk = λkx + (1 − λk)x0, for some

λk ∈ [0, 1]. Since xk → x, λk → 1. Without loss of generality, we may
assume λk ↑ 1. Put

Ak,ξ(t) = tξAk(x− x0), (∀t ∈ R).

A direct verification shows that Ak,ξ ∈ ∂fξ(λk). We claim that Ak,ξ(1 −
λk) → 0. Indeed, since fξ is convex on [0,1] then one of two following
cases holds.
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i) There exists t0 ∈ [0, 1) such that fξ increases on [t0, 1). Without loss
of generality, we may assume t0 = 0. From the definition of subdifferential,
for every k ≥ 1, one has

Ak,ξ(1− λk) ≤ fξ(1)− fξ(λk),

Ak,ξ(−λk) ≤ fξ(0)− fξ(λk) ≤ 0.

Hence,
0 ≤ Ak,ξ(1− λk) ≤ fξ(1)− fξ(λk).

Since fξ(1)− fξ(λk) = ξ[f(x)− f(λkx + (1− λk)x0)] → 0 then

Ak,ξ(1− λk) → 0 as k →∞.

ii) fξ decreases on [0,1). Since lim
λ↑1

fξ(λ) = fξ(1) then fξ decreases

on [0,1]. From the definition of subdifferential and the monotonicity of
subdifferential, one has

{
(Ak+1,ξ −Ak,ξ)(λk+1 − λk) ≥ 0,

Ak,ξ(1− λk) ≤ fξ(1)− fξ(λk) ≤ 0.

Hence, (Ak,ξ)k is an increasing and bounded from above sequence. There-
fore lim

k→∞
Ak,ξ ∈ R. Consequently,

lim
k→∞

Ak,ξ(1− λk) = 0.

We have seen that, in both cases, our claim is true. Thus, for every ξ ∈ C ′,
we have

lim
k→∞

ξAk(x− xk) = lim
k→∞

ξAk((1− λk)(x− x0))

= lim
k→∞

Ak,ξ(1− λk)

= 0.

Since C is closed, convex and pointed, intC ′ 6= ∅. Hence, lim
k→∞

ξAk(x −
xk) = 0, for every ξ ∈ L(Rm, R). This implies that

lim
k→∞

Ak(x− xk) = 0.
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The proof is complete.

The following theorem is the main result of this section.

Theorem 3.17. Let f be a convex vector function from a nonempty subset
D ⊆ Rn to Rm. If f satisfies the condition (H) at x ∈ D then

f∗∗(x) = f(x).

Proof. First, we consider the case x ∈ riD. By Proposition 4.12 in [2],
∂f(x) 6= ∅. Pick any A0 ∈ ∂f(x). By Proposition 3.6, f(x) = A0(x) −
f∗(A0). This and Proposition 3.5 implies

f(x) ∈ Ub
( ⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]
)
∩

∩ cl
(
co

( ⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]
))

.

Hence, by Corollary 2.21,

f(x) = ISup
⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]

= f∗∗(x).

Now, assume that x is a relative boundary point of D. From the hypoth-
esis, there exists x0 ∈ riD such that

(7) f(x) = lim
t↑1

f(tx + (1− t)x0).

Let (tk) ⊆ (0, 1) be an increasing sequence converging to 1. Put xk =
tkx + (1 − tk)x0. Obviously, (xk) ⊆ riD ∩ [x0, x] and xk → x. For every
k, pick any Ak ∈ ∂f(xk). By Proposition 3.6, f(xk) = Ak(xk) − f∗(Ak).
Hence,

‖f(x)− [Ak(x)− f∗(Ak)]‖ ≤ ‖f(x)− f(xk)‖+ ‖Ak(x− xk)‖.

Letting k →∞, by (7) and Lemma 3.16, we obtain

‖f(x)− [Ak(x)− f∗(Ak)]‖ → 0.
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By this and by Proposition 3.5, one has

f(x) ∈ Ub
( ⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]
)
∩

∩ cl
(
co

( ⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]
))

.

Hence, by Corollary 2.21,

f(x) = ISup
⋃

A∈L(Rn,Rm)

[A(x)− f∗(A)]

= f∗∗(x).

The proof is complete.

Corollary 3.18. Let F : Rn−→−→Rm be a convex set-valued map such that
there exists IInfF (x), for every x ∈ domF . If IInfF satisfies the condition
(H) at x ∈ dom F then

F ∗∗(x) = IInfF (x).

Proof. This is immediate from Theorem 3.17, Lemma 3.7 and Lemma 3.8.

4. Directional derivative

Let D be a nonempty convex subset of Rn and let x ∈ D. The direction
v ∈ Rn is said to be a feasible direction of D at x if there exists t > 0 such
that x+ tv ∈ D. The set of the feasible directions of D at x is denoted by
T(D; x).

We recall that the contingent cone of D at x ∈ Rn is defined as the set

K(D; x) := {v ∈ Rn : ∃vi → v, ∃ti ↓ 0 such that x + tivi ∈ D}.

The following results describe the structure of the set T(D;x).

Proposition 4.1. For every x ∈ D, one has
i) T(D;x) is a convex cone.
ii) T(D; x) ⊆ K(D; x).
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The equality holds if x ∈ riD. In this case,

T(D; x) = K(D; x) = spanD,

where spanD denotes the subspace which is parallel to the affine hull of D.

Proof. i) It is not difficult to see that T(D; x) is a cone. Let u, v ∈
T(D; x), λ ∈ [0, 1] be arbitrary. Then there exist s, t > 0 such that x +
su, x + tv ∈ T(D; x). Since D is convex then x + µsu + (1− µ)tv ∈ D, for
every µ ∈ [0, 1]. If we choose

µ =
λt

λt + (1− λ)s
,

t1 =
st

λt + (1− λ)s
,

then
x + t1(λu + (1− λ)v) = x + µsu + (1− µ)tv.

Hence, λu + (1− λ)v ∈ T(D; x).
ii) The inclusion is obvious from definition. To prove the last assertion,

without loss of generality, we assume that x = 0. Then we can find ε > 0
such that B̄spanD(0, ε) ⊆ D. For every v ∈ K(D; 0) \ {0}, there exists
vi → v, ti ↓ 0, such that tivi ∈ D. Then ε

vi

‖vi‖ ∈ B̄spanD(0, ε). Hence,

ε
v

‖v‖ = lim ε
vi

‖vi‖ ∈ B̄spanD(0, ε) ⊆ D.

This implies that v ∈ T(D; x). The equality T(D; x) = spanD is trivial.
The proof is complete.

We note that, the inclusion in Proposition 4.1 is strict in general. For
instance, let D = B̄((0, 1), 1) ⊆ R2, x = (0, 0). Then

K(D; x) = {(y, z) ∈ R2 : z ≥ 0},
and

T(D; x) = {(y, z) ∈ R2 : z > 0}.

Definition 4.2. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm. The directional derivative of f at x ∈ D in the
direction v ∈ T(D; x) is the following limit if such exists

f ′(x; v) = lim
t↓0

f(x + tv)− f(x)
t

.
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Proposition 4.3. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm and let x ∈ D, v ∈ T(D; x). If the set

{f(x + tv)− f(x)
t

: t > 0, x + tv ∈ D
}

is bounded below then there exists the directional derivative of f at x in
the direction v and

f ′(x; v) = IInf
{f(x + tv)− f(x)

t
: t > 0, x + tv ∈ D

}
.

Furthermore, f ′(x; .) is positively homogeneous and if domf ′(x; .) is convex
then f ′(x; .) is convex.

Proof. Put t0 = Sup{t > 0 : x + tv ∈ D}. It is clear t0 > 0. Then the
function

g(t) :=
f(x + tv)− f(x)

t

is defined on (0, t0) and takes value in Rm. From the hypothesis, g is
bounded below on (0, t0). Let t, t′ ∈ (0, t0), t ≤ t′. By [1, Chapter 1,
Proposition 6.2], ξf is convex, for every ξ ∈ C ′, hence

ξf(x + tv)− ξf(x)
t

≤ ξf(x + t′v)− ξf(x)
t′

.

i.e.
ξg(t) ≤ ξg(t′), (∀ξ ∈ C ′).

This implies g(t) ≤ g(t′), i.e. g is increasing on (0, t0). Then by Corollary
2.15, one has

f ′(x; v) = lim
t↓0

g(t)

= IInf
t∈(0,t0)

g(t)

= IInf{f(x + tv)− f(x)
t

: t > 0, x + tv ∈ D}.

From the definition it follows that f ′(x; .) is positively homogeneous.
Now, assume that domf ′(x; .) is convex. Let u, v ∈ domf ′(x; .), λ ∈

(0, 1) be arbitrary. Then for every t > 0, by the convexity of f , one has

f(x + t(λu + (1− λ)v))− f(x)
t

¹ λ
f(x + tu)− f(x)

t

+ (1− λ)
f(x + tv)− f(x)

t
.
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Letting t ↓ 0, by the closedness of C, we have

f ′(x;λu + (1− λ)v) ¹ λf ′(x;u) + (1− λ)f ′(x; v).

The proof is complete.

Proposition 4.4. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm. If f is subdifferentiable at x ∈ D then

domf ′(x; .) = T(D; x).

Proof. Obviously, domf ′(x; .) ⊆ T(D; x). Let v ∈ T(D; x) be arbitrary.
Pick any A ∈ ∂f(x). For every t > 0 such that x + tv ∈ D, one has

f(x + tv)− f(x) º tA(v).

Hence, {f(x + tv)− f(x)
t

: t > 0, x + tv ∈ D
}

is bounded below by A(v). Then by Proposition 4.3, v ∈ domf ′(x; .). The
proof is complete.

We note that if x ∈ riD then by Proposition 4.1, T(D;x) = spanD and
by Theorem 4.12 in [2], f is subdifferentiable at x. Hence, domf ′(x; .) =
spanD.

The following proposition is the most remarkable result of this section.

Proposition 4.5. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm and let x ∈ riD. Then for every v ∈ T(D; x), one
has

f ′(x; v) = ISup{A(v) : A ∈ ∂f(x)}.
Proof. For every ξ ∈ C ′ \ {0}, by [1, Chapter 1, Proposition 6.2], ξf is
convex and by Theorem 4.6 in [2],

∂(ξf)(x) = ξ∂f(x).

Then by [3, Chapter 5, Theorem 23.4], for every v ∈ T(D; x), we have

(ξf)′(x; v) = Sup{B(v) : B ∈ ∂(ξf)(x)}
= Sup{ξA(v) : A ∈ ∂f(x)}
= Supξ{A(v) : A ∈ ∂f(x)}.
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On the other hand, one has

(ξf)′(x; v) = lim
t↓0

ξf(x + tv)− ξf(x)
t

= ξlim
t↓0

f(x + tv)− f(x)
t

= ξf ′(x; v).

Hence,
ξf ′(x; v) = Supξ{A(v) : A ∈ ∂f(x)}.

Then by Proposition 2.23,

f ′(x; v) = ISup{A(v) : A ∈ ∂f(x)}.

The proof is complete.

Proposition 4.6. Let f be a convex vector function from a nonempty
subset D ⊆ Rn to Rm and let x ∈ D, A ∈ L(Rn.Rm). Then A ∈ ∂f(x) if
and only if A(v) ¹ f ′(x; v), for every v ∈ T(D;x).

Proof. The ‘only if’ part is immediate from Proposition 4.3 and from the
proof of Proposition 4.4.

For the ‘if’ part, let y ∈ D be arbitrary. Set v := y − x. Then v ∈
T(D; x). From the hypothesis and from Proposition 4.3, one has

A(v) ¹ f ′(x; v) ¹ f(x + v)− f(x).

Hence, A ∈ ∂f(x). The proof is complete.

Lemma 4.7. Let a ∈ Rm. If a /∈ −C then {ta : t ≥ 0} is unbounded from
above.

Proof. Since C is convex and closed then, by the separation theorem, there
exists ξ ∈ C ′ \ {0} such that

ξ(a) > Sup{ξ(x) : x ∈ −C} = 0.

Assume the contrary that {ta : t > 0} is bounded from above by some
b ∈ Rm. Then −b + ta ∈ −C, for every t ≥ 0. Hence,

ξ(a) > −ξ(b) + tξ(a),
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for every t ≥ 0. Letting t → ∞, we arrive at a contradiction. The proof
is complete.

Corollary 4.8. Let f be a convex vector function from a nonempty subset
D ⊆ Rn to Rm and let x ∈ D with domf ′(x; .) = T(D;x). Then

∂f(x) = dom[f ′(x; .)]∗.

Proof. Let A ∈ ∂f(x) be arbitrary. By Proposition 4.6, A(v) ¹ f ′(x; v),
for every v ∈ T(D; x). Hence,

⋃

v∈domf ′(x;.)

{A(v)− f ′(x; v)}

is bounded from above by 0. This implies that A ∈ dom[f ′(x; .)]∗.
Conversely, let A ∈ dom[f ′(x; .)]∗ be arbitrary. From the definition of

conjugate functions, the set

⋃

v∈domf ′(x;.)

{A(v)− f ′(x; v)}

is bounded from above. We shall show that

A(v)− f ′(x; v) ¹ 0,

for every v ∈ domf ′(x; .). Then by Proposition 4.6, A ∈ ∂f(x), which
completes the proof. Indeed, assume in the contrary that there is a point
v ∈ domf ′(x; .) such that A(v) − f ′(x; v) /∈ −C. Since f ′(x; .) is posi-
tively homogeneous, by Lemma 4.7, the set {A(tv) − f ′(x; tv) : t ≥ 0} is
unbounded from above. We arrive at a contradiction.

5. Conjugate duality

We conclude this paper by giving an application of conjugate maps to
the dual problems of vector optimization problems.

Let C ⊆ Rm and K ⊆ Rk be closed, convex and pointed cones. Let F
and G be set-valued maps from Rn to Rm and Rk respectively, and let X
be a nonempty subset of Rn such that

X ⊆ domF ∩ domG.
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Let us consider the vector optimization problem (V P ) with set-valued
data:

minF (x)

s.t. x ∈ X, G(x) ∩ −K 6= ∅.

Put
X0 := {x ∈ X| G(x) ∩ −K 6= ∅}.

Assume that X0 6= ∅. We recall that x0 ∈ X0 is said to be an optimal
solution of (V P ) if F (x0) ∩Min(F (X0)|C) 6= ∅. x0 ∈ X0 is said to be an
ideal optimal solution of (V P ) if F (x0) ∩ IMin(F (X0)|C) 6= ∅.

Define a perturbation for (V P ) as a map from Rn ×Rk to Rm by the
rule

Φ(x, b) = F (x), x ∈ X, G(x) ∩ −(K + b) 6= ∅;
Φ(x, b) = ∅, otherwise.

Observe that domΦ is nonempty since X0 is nonempty. The perturbed
problem corresponding to a vector b ∈ Rk will be of the form

(Pb) min Φ(x, b)
s.t. x ∈ Rn.

It is clear that problem (V P ) is the same as (P0).
The conjugate map Φ∗ of Φ is a set-valued map from L(Rn ×Rk, Rm)

to Rm defined by

Φ∗(z, y) = Sup(
⋃

(x,b)∈Rn×Rk

[z(x) + y(b)− Φ(x, b)]| C),

y ∈ L(Rk, Rm), z ∈ L(Rn, Rm).

For every fixed z ∈ L(Rn, Rm), we then have a vector problem

max−Φ∗(z, y)

s.t. y ∈ L(Rk, Rm).

Let us denote this latter problem by (D∗) in the special case where z = 0
and call it the conjugate dual of (V P ).
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We note that by [1, Chapter 5, Proposition 2.1], Φ is C-convex in both
variables on Rn×Rk if X is convex, F is C-convex, G is K-convex on X.
By Proposition 3.5 above, Φ∗ is C-convex.

Recall from [1] that a triple (x, a, b) ∈ Rn × Rm × Rk is said to be
feasible if x ∈ X, a ∈ F (x) and b ∈ G(x) ∩ −K. For the dual problem a
feasible couple (y, a′) ∈ L(Rk, Rm)×Rm means that a′ ∈ −Φ∗(0, y).

Theorem 5.1 (Weak duality). For every feasible triple (x0, a0, b0) of
(V P ) and feasible couple (y0, a

′
0) of (D∗), one has

a′0 ¹C a0.

Proof. We have

a′0 ∈ −Φ∗(0, y0)

= −Sup
( ⋃

(x,b)∈Rn×Rk

[y0(b)− Φ(x, b)]
)

= Inf
( ⋃

(x,b)∈Rn×Rk

[Φ(x, b)− y0(b)]
)
.

Hence, a′0 ∈ LbΦ(x0, 0) = LbF (x0). Thus, a′0 ¹C a0. The proof is
complete.

Theorem 5.2. If there are x0 ∈ X, y0 ∈ L(Rk, Rm) such that

0 ∈ Φ(x0, 0) + Φ∗(0, y0)

then x0 is an ideal optimal solution of (V P ), y0 is an ideal optimal solution
of (D∗) and the ideal optimal values of these problems are equal.

Proof. Let a0 ∈ Φ(x0, 0)∩−Φ∗(0, y0). Then (y0, a0) is a feasible couple of
(D∗). For every feasible triple (x, a, b) of (V P ), by Theorem 5.1, one has

a0 ¹C a.

Then a0 = IMin (F (X0)| C) and x0 is an ideal optimal solution of (V P ).
Now, let b0 ∈ G(x0)∩−K. Then (x0, a0, b0) is a feasible triple of (V P ).

For every feasible couple (y, a′) of (D∗), by Theorem 5.1, one has

a′ ¹C a0.
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Then a0 = IMax
(−Φ∗(0, L(Rk, Rm))| C

)
and y0 is an ideal optimal solu-

tion of (D∗). The proof is complete.
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