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THE STRUCTURE OF TYPE (Ω) OF SPACES
OF BANACH-VALUED HOLOMORPHIC GERMS

NGUYEN VAN KHUE AND NGUYEN DINH LAN

Abstract. This paper gives a sufficient condition which implies the
property of type (Ω) of [H(K,X)]′, where H(K,X) is the space of germs of
X-valued holomorphic functions on K.

Introduction

Let K be a compact subset in a Fréchet space E and X a Banach
space. By H(K, X) we denote the space of germs of X-valued holomor-
phic functions on K. Write H(K) for H(K, C). The space H(K,X), in
particular H(K), is an important subject of infinite dimensional holomor-
phy. Its structure was investigated by several authors. In [6], Meise and
Vogt have shown that [H(K)]′ has (Ω) for every compact subset K in a
nuclear Fréchet space E as long as E has (Ω). Recently, this result has
been extended to the general case where E is only Fréchet by Nguyen Van
Khue and Phan Thien Danh [10]. Earlier, Mujica in [9] has proved that
H(K) is the dual of a quasinormable Fréchet space. The quasinormability
of [H(K)]′ was proved in [12]. Hence, by Meise and Vogt [7], [H(K)]′ has
(Ωϕ). Several results on quasinormality of spaces of holomorphic functions
have appeared recently in [1], [2], [4], etc. However, the quasinormability
of [H(K, X)]′, where X is an arbitrary Banach space, cannot be deduced
immediately from that of [H(K)]′, which occures only when K is a com-
pact subset of a quasinormable Fréchet space [10]. The main reason is that
there is no commutative relation between the inductive tensor product and
the inductive limit of a sequence of Banach spaces.

The main aim of the present paper is to study the properties of type
(Ω) for [H(K,X)]′. Namely, in Section 2 and Section 3 we extend the
results of [9], [12] to [H(K, X)]′, where X is an arbitrary Banach space
(Theorem 2.1 and Theorem 3.1). For the proof of Theorem 2.1, we need a
characterization of the quasinormability, which is similar to a case of type
(Ω̄) in [13]. The proofs of Theorem 2.1 and 3.1 are presented in Section 2
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and Section 3, respectively. Finally, an application of the quasinormability
is given in Section 4.

1. Basic notions

In this article we shall make use of the properties of holomorphic func-
tions on locally convex spaces as in Dineen [4] and the properties of quasi-
normable spaces as in Meise and Vogt [8].

1.1. A locally convex space E is called quasinormable if for every 0-
neighbourhood U there exists a 0-neighbourhood V such that for every
ε > 0 there exists a bounded set M in E for which V ⊂ M + εU .

In [7] Meise and Vogt have proved that a Fréchet space E is quasi-
normable if and only if E has (Ωϕ). This means that there exists a
strictly increasing function ϕ : (0; +∞) −→ (0; +∞) such that for some
balanced convex neighbourhood basis {Uq} of 0 ∈ E, the following holds

(Ωϕ) ∀p ∃q ∀k ∃C > 0 Uq ⊆ Cϕ(r)Uk +
1
r
Up , ∀r > 0.

By polarization it is easy to see that (Ωϕ) is equivalent to

(Ωϕ)◦ ∀p ∃q ∀k ∃C > 0 ‖•‖∗q ≤ Cϕ(r) ‖•‖∗k +
1
r
‖•‖∗p , ∀r > 0

where ‖u‖∗q = sup{ |u(x)| : x ∈ Uq } for u ∈ E′, the dual space of E.
If (Ωϕ) is replaced by

(Ω) ∀p ∃q ∀k ∃C, d > 0 Uq ⊆ CrdUk +
1
r
Up , ∀r > 0,

we say that E has the property (Ω).

1.2. Let E and F be locally convex spaces and U an open subset in E. A
function f : U −→ F is called holomorphic if f is continuous and u◦f is
Gâteaux holomorphic for every u ∈ F ′. By H(U,F ) we denote the space
of F -valued holomorphic functions on U , equipped with the open-compact
topology. Instead of H(U,C) we write H(U).

Now assume that K is a compact subset in E. A function f : K −→ F
is said to be holomorphic if there exists a F -valued holomorphic function
f̂ on a neighbourhood U of K such that f̂ |K = f .

On
⋃ {H(U,F ) : U ⊃ K and U is open} we define the canonical equiv-

alence. We denote by H(K, F ) the resulting vector space of equivalent
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classes and the elements f ∈ H(K, F ) are called holomorphic germs on
K. Write H(K) for H(K, C). The space H(K, F ) is equipped with the
inductive limit topology

H(K, F ) = lim ind
U⊃K,U open

[H(U,F ), τω]

where τω denotes the Nachbin topology on H(U,F ), i.e. the topology on
H(U,F ) generated by seminorms ρ satisfying the following property:
There exist a continuous seminorm α on F and a compact subset A ⊂ U
such that for every neighbourhood V of A in U there exists C > 0 for
which

ρ(f) ≤ C sup
z∈U

α(f(z))

for every f ∈ H(U,F ).
Note that if F is a Banach space, then

H(K,F ) = lim ind
U⊃K,U open

H∞(U,F ),

where H∞(U,F ) is the Banach space of F -valued bounded holomorphic
functions on U.

2. The quasinormability of [H(K,X)]′

In this section we prove the following

Theorem 2.1. Let K be a compact subset in a quasinormable Fréchet
space and X a Banach space. Then [H(K, X)]′ is quasinormable.

We need the following characterization of quasinormable spaces, which
is similar to the one of Fréchet spaces having (Ω̄) in [13].

Proposition 2.2. Let E be a Fréchet space. Then E is quasinormable
if and only if there exist a strictly increasing function ϕ : (0; +∞) −→
(0; +∞) and a bounded subset B in E such that

(1) ∀p ∃q, C > 0 ∀r > 0 Uq ⊆ Cϕ(r)B +
1
r
Up.

Proof. The sufficiency is obvious. Conversely, assume that E is quasi-
normable.

By [7] there exist a Banach space X and a nuclear Fréchet space F such
that E is a quotient space of X⊗̂πF . Assume R : X⊗̂πF −→ E is the
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quotient map. Given U a neighbourhood of 0 ∈ E. Choose a balanced
convex neighbourhood Ũ of 0 ∈ F such that conv(W ⊗ Ũ) ⊂ R−1(U),
where W denotes the unit ball of X. Since F is nuclear, we can find
a balanced convex neighbourhood Ṽ of 0 ∈ F such that Ṽ is relatively
compact for the seminorm generated by Ũ .

Let ε > 0 be given. Take a finite subset M̃ in Ṽ such that Ṽ ⊂
M̃ +

ε

2
Ũ . Obviously R

(
conv(W ⊗ M̃)

)
is bounded in R

(
conv(W ⊗ Ṽ )

)
,

a neighbourhood of 0 ∈ E. We have

R
(
conv(W ⊗ Ṽ )

)
⊆ R

(
conv(W ⊗ M̃)

)
+

ε

2
R

(
conv(W ⊗ Ũ)

)

⊆ R
(
conv(W ⊗ M̃)

)
+ εU.

By Meise and Vogt [7] there exists ϕ ∈ M , the set of strictly increasing
functions ψ : (0; +∞) −→ (0; +∞), such that

(2) ∀p ∃q(p) ∀k ∃Ck > 0 ∀r > 0 Uq(p) ⊆ Ckψ(r)Uk +
1
r
Up.

On the other hand, without loss of generality we may assume that q(p)
satisfies the condition:
∀ε > 0 ∃ a bounded set B ⊂ Uq(p) such that Uq(p) ⊂ B+εUp ⊆ B+εVp.
Fix p = 1. Put V1 = U1 and V2 = Uq(1) . Write (2) in the form

V2 ⊆ Ckϕ(r)Uk +
1
r
V1 ∀r > 0 ∀k ≥ 1.

For each k ≥ q(1), we can find a bounded set B
(1)
k in Uk such that

Uk ⊆ B
(1)
k +

1
kϕ(k)

V1.

Hence
V2 ⊆ Ckϕ(k)B(1)

k +
1
k

V1 ∀k ≥ q(1).

Put B1 =
⋃
k

B
(1)
k . It follows that B1 is a bounded set in V1 and

V2 ⊆ Ckϕ(k)B1 +
1
k

V1 ∀k ≥ q(1).
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Choose ψ1 ∈ M such that

ψ1(r) ≥ Ck+1ϕ(r)

for k ≤ r < k + 1. Then

V2 ⊆ Ck+1ϕ(k + 1)B1 +
1

k + 1
V1

⊆ ψ1(r)B1 +
1
r
V1

for k ≤ r < k + 1.
Applying (2) to Uk ⊂ V2 as above, we can find a neighbourhood V3 ⊂

V2, ψ2 ∈ M and a bounded set B2 ⊂ V2 such that

V3 ⊆ ψ2(r)B2 +
1
r
V2

for r ≥ 1.
Continuing this process we get a neighbourhood basis {Vk} of 0 ∈ E, a

sequence {ψk} ⊂ M and a sequence of bounded sets {Bk ⊂ Vk} such that

(3) Vk+1 ⊆ ψk(r)Bk +
1
r
Vk

for r ≥ 1.
Let B =

⋃
k≥1

Bk and ψ ∈ M such that

Ck := sup
r≥1

ψk(r)
ψ(r)

< ∞

for k ≥ 1. Then, by (3) we have

(4) Vk+1 ⊆ Ckψ(r)B +
1
r
Vk

for r ≥ 1, where B =
⋃

k≥1

Bk is a bounded set in E. The proposition is

proved.
Now we may prove Theorem 2.1 as follows.
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Proof of Theorem 2.1. Let {Uq} be a decreasing neighbourhood basis of
K in E. Since E is quasinormable, so is [H(K)]′ [9], [12]. By applying
Proposition 2.2 in the polarization form we can find a bounded set B in
[H(K)]′ and a strictly increasing function ϕ : (0; +∞) −→ (0; +∞) such
that

∀p ∃q, C > 0 ∀r > 0 ∀f ∈ H(K) ⊂ [H(K)]′′,

‖f‖W◦
q
≤ Cϕ(r) ‖f‖B +

1
r
‖f‖W◦

p
,

where Wq denotes the unit ball in H∞(Uq) and

‖f‖W◦
q

= sup
{|µ(f)| : µ ∈ W ◦

q

}
.

Note that by the Hahn Banach theorem we have

‖f‖W 0
q

= ‖f‖Uq := sup
{|f(z)| : z ∈ Uq

}

Let B̃ be the subset of [H(K, X)]′ consisting of elements of the forms
µx∗ with x∗ ∈ X ′, µ ∈ B such that

µx∗(f) = µ(x∗f)

for every f ∈ H(K, X). Then, if W̃q is the unit ball of H∞(Uq, X), we
have

‖f‖
W̃◦

q
= sup

z∈Uq

‖f(z)‖ = sup
||x∗||≤1

‖x∗f‖W◦
q

≤ Cϕ(r) sup
||x∗||≤1

‖x∗f‖B +
1
r

sup
||x∗||≤1

‖x∗f‖W◦
p

= Cϕ(r) ‖f‖B̃ +
1
r
‖f‖

W̃◦
p

for every r > 0 and every f ∈ H(K, X). By the σ [[H(K,X)]′, H(K,X)]-
compactness of B̃◦◦, this yields that

W̃ ◦
q ⊆ Cϕ(r)B̃◦◦ +

1
r
W̃ ◦

p ∀r > 0.

Consequently, [H(K, X)]′ is quasinormable. The proof of Theorem 2.1 is
now complete.
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3. The property (Ω) of [H(K, X)]′

In this section we prove the following

Theorem 3.1. Let E be a Fréchet space having (Ω) and K a compact
subset in E. Then, [H(K, X)]′ has (Ω) for every Banach space X.

For the proof of Theorem 3.1 we need the following two lemmas

Lemma 3.2. Let E = lim proj Ek and F = lim proj Fk be Fréchet spaces
and let R : E −→ F be the continuous linear map induced by continuous
linear surjections Rk : Ek −→ Fk. Assume that E can be written in an
other form E = lim proj Qk such that E is dense in Qk for k ≥ 1 and the
projective spectrum {Ek} is equivalent to {Qk}. Then, F has (Ω) if E has
(Ω).

Proof. Choose a balanced convex neighbourhood basis {Wk} of 0 ∈ E
such that Qk = E(Wk), the Banach space associated to Wk, for k ≥ 1.
Given p ≥ 1. Since E has (Ω), we have

∃q ∀k ∃C, d > 0 : ‖ · ‖∗1+d
Wq−1

≤ C‖ · ‖∗Wk
‖ · ‖∗dWp

Since the projective spectrums {Qk} and {Ek} are equivalent, without
loss of generality we may assume that there exists the following diagram

Qp −−−−−→ Ep −−−−−→
Rp

Fpx γp
q−1

↖
x

x
Qp−1 −→ Eq−1 −→

Rq−1
Fq−1x γq−1

q
↖

x
x

Qq −−−−−→ Eq −−−−−→
Rq

Fqx γq
k
↖

x
x

Qk −−−−−→ Ek −−−−−→
Rk

Fk

Moreover, we may assume that

R(Wk) ⊂ Vk, Rk(Ûk) ⊂ V̂k and
(
γq

k

)−1(Wq) ⊃ Ûk

for k ≥ q ≥ p, where Ûk and V̂k are the unit balles of Ek and Fk respec-
tively.
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Given v ∈ F ′, ‖v‖∗Vp
< +∞. Choose v̂ ∈ F ′q such that v̂ is an extension

of v and ‖v̂‖∗
V̂q

= ‖v‖∗Vq
. We have

‖v‖∗Vq
= ‖v̂‖∗

V̂q
= ‖v̂Rq‖∗Ûq

≤ ‖v̂Rq−1‖∗Wq−1

≤ C1/1+d‖v̂Rq−1‖∗ 1/1+d
Wk

‖v̂Rq−1‖∗d/1+d
Wp

≤ C1/1+d‖v‖∗1/1+d
Vk

‖v‖∗d/1+d
Vp

.

Hence the lemma is proved.

Lemma 3.3. Let E be a Frechet space with the property (Ω). Then there
exists a fundamental systems of seminorms

{‖ · ‖k

}
of E such that the

image of every canonical map E′′ → E′′
k is dense for all k ≥ 1. Here Ek

denotes the Banach space associated to ‖ · ‖k.

Proof. By Vogt [14] there exists a Banach space B and a continuous linear
surjection R : B⊗̂πs → E, where s is the space of the rapidly decreasing
sequences. Moreover, by [10] R can be chosen such that R′ : E′ → (B⊗̂πs)′

is an embedding. Assume that Wk = conv(U ⊗Uk), k ≥ 1 where U is the
unit ball of B and

Uk =
{

x = (xj) ∈ S : ‖x‖k :=
∞∑

j=1

|xj |jk ≤ 1
}

.

Then
{
Wk

}
forms a neighbourhood basis of 0 ∈ B ⊗π s and hence so is{

Vk = R(Wk)
}

for 0 ∈ E. Note that R induce continuous linear surjec-
tions

Rk :
(
B⊗̂πs)Wk

→ EVk
,

where
(
B⊗̂πs

)
Wk

and EVk
are Banach spaces associated to Wk and Vk,

respectively.
Since s is nuclear, we have

lim ind
k

(
B⊗̂πs

)′
Wk

∼=
(
B⊗̂πs

)′ ∼= B′⊗̂πs′ ∼= B′⊗̂π

(
lim ind

k
s′k

)

∼= B′⊗̂ε

(
lim ind

k
s′k

) ∼= lim ind
k

(
B′⊗̂εs

′
k

) ∼= lim ind
k

(
B′⊗̂πs′k

)
,

where the last isomorphism follows from the nuclearity of the canonical
maps s′k → s′k+1. Thus, by the surjectivity of R′′k :

(
B⊗̂πs

)′′
Wk

→ E′′
k , it
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suffices to check that
(
B′⊗̂πs′k

)′ is dense in
(
B′⊗̂πs′k−1

)′ for the topology
of

(
B′⊗̂πsk−2

)′ for k ≥ 3. But this follows from the relations

(
B′⊗̂πs′k

)′ ∼= L(B′, sk)

and ∞∑

j=1

‖e∗j‖k‖ej‖k−2 =
∞∑

j=1

1
j2

< ∞.

On the other hand, since R′′k : B′′⊗̂πsk −→ E′′
k is surjective and

B′′⊗̂πs is dense in B′′⊗̂πsk, it follows that E′′ is dense in E′′
k for k ≥ 1.

This proves Lemma 3.3.

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that X is complemented in X ′′. Then so
is H(K, X) in H(K, X ′′). Thus, it remains to show that [H(K, X ′′)]′ has
(Ω). By [3], there exists a Fréchet space G(K) = lim proj Gn, where Gn

are Banach spaces, such that

H(K, X ′′) ∼= lim ind L(Gn, X ′′) ∼=
[
lim proj(Gn⊗̂πX ′)

]′
i
,

the bornological dual of lim proj(Gn⊗̂πX ′).
Let {Un} be a decreasing neighbourhood basis of K in E and let Wq

and W̃q, for each q ≥ 1, be the unit balls in H∞(Uq) and H∞(Uq, X
′′),

respectively. Since [H(K)]′ has (Ω) [10], we have

(1) ∀p ∃q ∀k ∃C, d > 0 ∀f ∈ H(K) ⊆ [H(K)]′′,

‖f‖1+d
W◦

q
≤ C ‖f‖W◦

k
‖f‖d

W◦
p

.

From the relations
‖f‖W◦

q
= sup

Uq

|f(z)| ,

for f ∈ H(K), and

‖f‖
W̃◦

q
= sup

Uq

‖f(z)‖ = sup
||x∗||≤1

‖x∗f‖W◦
q

for f ∈ H(K, X ′′), it follows that (1) holds also for H(K, X ′′):

∀p ∃q ∀k ∃C, d > 0 ‖f‖1+d

W̃◦
q

≤ C ‖f‖
W̃◦

k
‖f‖d

W̃◦
p
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for f ∈ H(K, X ′′) ∼= [lim proj(Gn⊗̂πX ′)]i. This means that lim proj(Gn⊗̂πX ′)
has (Ω) and hence,

[H(K, X ′′)]′ ∼= [lim proj(Gn⊗̂πX ′)]′′

also has (Ω).

Now we consider the general case. Let {Vn} be a decreasing neighbour-
hood basis of K. For each n ≥ 1, we denote by Rn the canonical map
from H∞(Vn, X) into H∞(Vn, X ′′).

We have

[H(K, X ′′)]′ ∼= lim proj [H∞(Vn, X ′′)]′

[H(K, X)]′ ∼= lim proj [H∞(Vn, X)]′

If R : H(K,X) −→ H(K, X ′′) is the canonical map, then R′ : H(K, X ′′)]′ →
[H(K, X)]′ is induced by the continuous linear surjections

R′n : [H∞(Vn, X ′′)]′ −→ [H∞(Vn, X)]′.

On the other hand, since Q := lim proj (Gn⊗̂πX ′) has (Ω), we can write
Q = lim proj Qn such that Q′′ is dense in Q′′

n for n ≥ 1. For each n ≥ 1,
consider the canonical map Q′

n −→ lim ind H∞(Vn, X ′′). Then there ex-
ists α(n) ≥ n such that Q′n is continuously mapped into H∞(Vα(n), X

′′).
Similarly, we can find βα(n) ≥ α(n) such that H∞(Vα(n), X

′′) is contin-
uously embedded into Q′

βα(n). This yields that the inductive spectrums
{Q′n} and {H∞(Vn, X ′′)} are equivalent. Hence the projective spectrums
{Q′′n} and {[H∞(Vn, X ′′)]′} are also equivalent. As we have seen at the
beginning of the proof, [H(K, X ′′)]′ ∈ (Ω), and Lemma 3.2 yields that
[H(K, X)]′ ∈ (Ω).

The proof of Theorem 3.1 is complete.

4. An application of the quasinormability of [H(K,X)]′

In this section we are interested in the problem whether H(K, X) is a
closed subspace of H(K, Y ) for every compact subset K in a Fréchet space
E and every closed subspace X of a Banach space Y . Up to now, the
completeness of H(K, Y ) is an open problem. However, in [3] the authors
have shown that H(K, Y ) is complete in some cases, in particular, when
Y is complemented in Y ′′. The above problem seems to be not easy. By
applying Theorem 2.1, we prove the following.
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Theorem 4.1. Let E be a quasinormable Fréchet space with an absolute
basis and X a closed subspace of a Banach space Y . Then H(OE , X) is a
closed subspace of H(OE , Y ), where OE denotes the zero-element of E.

Proof. Let Z be the quotient space Y/X with the quotient map R :
Y −→ Z and the embedding : X −→ Y . By Theorem 2.1, [H(OE , Z)]′ is
quasinormable. Hence, by [8], it suffices to show that the sequence

O −→ [H(OE , Z)]′ R̂′−→ [H(OE , Y )]′ Ŝ′−→ [H(OE , X)]′ −→ O,

is exact, where R̂ and Ŝ are induced by R and S respectively.
Choose a balanced convex neighbourhood basis {Un} of OE ∈ E such

that 3Un+1 ⊆ Un for n ≥ 1.
First we will show that R̂ : H(OE , Y ) −→ H(OE , Z) is surjective and

hence, it is open [11].
Given g ∈ H(OE , Z) Take n ≥ 1 such that g ∈ H∞(Un, Z). Write the

Taylor expansion of g at OE ∈ E

g(z) =
∑

k≥0

Pkg(z),

where

Pkg(z) =
1

2πi

∫

|λ|=1

g(λz)
λk+1

dλ and z ∈ Un.

We have

‖Pkg‖Un+1
= sup

z∈Un+1

∣∣∣∣∣∣∣
1

2πi

∫

|λ|=3

g(λz)
λk+1

dλ

∣∣∣∣∣∣∣

≤
(

1
3

)k

‖g‖Un+1

for k ≥ 0.
For each k, let P̂kg denote the continuous symmetric k-linear map asso-

ciated to Pkg. Since En, the Banach space associated to Un, is isomorphic
to l1 it is easy to see that for each k ≥ 0 we can find a continuous sym-
metric k-linear map

Q̂k : E × · · · × E︸ ︷︷ ︸
k

−→ Y
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such that
Qk(Rz) := Q̂k(Rz, . . . , Rz︸ ︷︷ ︸

k

) = Pkg(z)

for z ∈ E and

‖Qk‖Un+1
:= sup

Un+1

‖Qk(z)‖ ≤ Ck
∥∥∥P̂kg

∥∥∥
Un+1 × · · · × Un+1︸ ︷︷ ︸

k

,

where C > 1 is chosen so that
∑

k≥0

(
C
3

)k kk

k
< ∞.

Thus, the form
f(z) =

∑

n≥0

Qk(z),

for z ∈ Un+1, defines f ∈ H(OE , Y ) such that R̂f = g. Hence KerR̂′ = O

and KerŜ′ =ImR̂′.

By [8], to prove ImŜ′ = [H(OE , X)]′ it remains to check that

Im ([H∞(Un+1, Z)]′ −→ [H∞(Un−1, Z)]′)

is dense in
Im ([H∞(Un, Z)]′ −→ [H∞(Un−1, Z)]′)

for n ≥ 2.
Given µ ∈ Im([H∞(Un, Z)]′ −→ [H∞(Un−1, Z)]′) and ε > 0. Take k◦

such that ∑

k>k◦

(
1
3

)k

< ε.

Put µε(f) =
∑

0≤k≤k◦
µ(Pkf) for f ∈ H∞(Un+1, Z). Then µε ∈ [H∞(Un+1, Z)]′

and

|µ(g)− µε(g)| =
∣∣∣∣∣∣
∑

k≥0

µ(Pkg)−
∑

0≤k≤k◦

µ(Pkg)

∣∣∣∣∣∣
≤

∑

k>k◦

|µ(Pkg)|

≤ ‖µ‖ ‖g‖Un−1

∑

k>k◦

(
1
3

)k

≤ ε ‖µ‖ ‖g‖Un−1
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for g ∈ H∞(Un−1, Z). Theorem 4.1 is now proved.
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ihre Folgerungen, Manuscript Math. 37 (1982), 269-301.

14. D. Vogt, On two classes of (F )-spaces, Arch. Math. 45 (1985), 255-266.

Department of Mathematics,
Pedagogical Institute Hanoi
Tu Liem, Hanoi, Vietnam

Department of Mathematics,
HoChiMinh city University of Education
280 An Duong Vuong , District 5,
HoChiMinh City, Vietnam
E-mail: ngdlanesed@hcm.vnn.vn


