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GROWTH OF MEROMORPHIC FUNCTIONS

JIANWU SUN

ABSTRACT. In this paper, we prove a general result concerning the growth
of meromorphic functions. Our condition is much weaker than that used
by Sing-Patil. Our result contains and improves the results of Nevanlinna,
Clunie and Goldberg-Ostrovoskii. As an application, we solve a problem
proposed by C. C. Yang.

1. INTRODUCTION

This paper concerns the following results.

Theorem A (Nevanlinna [3]). Let f(z) be a meromorphic function of
order p (p < o0) and lower order A, if p — X\ < 1, then

T(r+1,f)~T(rf) (r — o0).

Theorem B (Clunie [1]). Let f(z) be an entire function of order p (p <
o0). If k> p—1, then

logM(r,f)NlogM(r—r_k,f) (r — o0).

Theorem C (Goldberg and Ostrovoskii [2]). Let f(z) be a meromorphic
function of order p (p < 00) and lower order \, if p — X\ < 1, then for all
constants k, we have

T(r+klogr, f) ~T(r, f) (r — o0).

Theorem D (Singh and Patil [4]). Let f(z) be a meromorphic function of
order p (p < o) and lower order A. Let E be the set of those r for which
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T'(r, f) fails to exist and let E be bounded. Let ¢(r) and ¥(r) be two
continuous positive increasing functions of r such that

L lim p(r)/6(r) =0,
2. rli)rgo log(r)/logp(r) = a (a > 0).
If p— A< 1—a, then

T(o(r) £(r), f) ~T(p(r), [)  (r— o0).

We will omit the differentiability of T'(r, f) and a > 0 in Theorem D
and obtain the following result:

Theorem 1. Let f(z) be a meromorphic function of order p (p < oo) and
lower order A. Let ¢(r) and ¥ (r) be two positive functions, and ¢(r) be
continuous and tend to oo, and ¢(r),(r) satisfy

L Tim (r)/6(r) = 0;
2. lim log(r)/log ¢(r) = a (a < 1).
If p— A< 1—a, then
L T(p(r) £4(r), f) ~T(o(r), f) (1 — 00);

2. when f(z) is an entire function, we have

log M((r) £1(r), f) ~log M(o(r), f)  (r— oo).
Theorem 1 not only generalizes Theorem D but also contains and im-
proves Theorem A, Theorem B and Theorem C. The fact is:
(1) Take ¢(r) = r and ¥ (r) = 1, we get
Tim +(r)/(r) = 0,

and
Tli)r{)lo log(r)/logo(r) =0 = a.

Hence by Theorem 1, if p — A < 1 — «, that is p — A < 1, we obtain
T(r+1,f)~T(rf)  (r—o0).

This is the result of Theorem A.
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(2) Take ¢(r) = r and ¥(r) = klogr, we have
Tlim (1) /é(r) = 0,

and
log k + loglogr
=0=oa.

lim log¢(r)/log ¢(r) = lim log T
Thus by Theorem 1, if p — A <1 — «, that is p — A < 1, we see that
T(r+klogr, f) ~T(r, f) (r — 00).

This is the result of Theorem C.
(3) Take ¢(r) = r and ¥(r) = r~*(k > 0), then we get

Tim 4(r)/6(r) =0,

and
—klogr

rlin.}o log(r)/log¢(r) = lim =—-k=a(<0).

r—oo  logr

So,if k> p—1,thatisp— A< 1+k=1-—a, by Theorem 1 we have for
entire function f

logM(r—r_k,f)NlogM(r,f) (r — 00).

This is Theorem B.
Applying Theorem 1 we obtain following result:

Theorem 2. Let f(z) be a meromorphic function of order p (p < oco) and
lower order A\, let P(z) and Q(z) be two polynomials with deg P = m >
deg@. If p— XA < 1/m, then

T(r, f(P(2) + Q(2))) ~ T(r, f(P(2)))  (r— 00).

Furthermore, C. C. Yang posed the following problem in [5]:
Let f be a meromorphic function , if

o T f+1)
oo T(r, f(2))

can one prove that the order py = oo or furthermore, lower order Ay = oo?
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From Theorem 2, we have the following result

Corollary 1. Let f(z) be a meromorphic function of order p and lower
order X, let P(z) and Q(z) be two polynomials with deg P = m > deg @,
and p— A< 1/m. If

lim L f(P+Q))
r—oo T(r, f(P))

Then
pf = )\f = Q.

Remark. 1If we take P(z) = z, Q(z) = 1, then we get the answer to problem
of C. C. Yang as follows.

Corollary 2. Let f be a meromorphic function of order p and lower order
A with p— A< 1. If

A

Then
pf = )\f = 0.

2. PROOF OF THEOREM 1

2.1. We first prove that T(¢(r) + (r), f) ~ T(é(r), f)(r — o0) holds.

Since T'(r, f) is a nondecreasing continuous function of r, we can get

() + (). f)
1) AT TG )

Thus, we need only to show that

=T (¢(r) + (), )

lim < 1.

rooo T((r),f)

By our assumptions, there exists ro > 0, such that for » > r¢ we have

P(r) < o(r) < or) +9(r) < 2¢(r).
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Thus

log (1) <log ¢(r) <log((r) +(r))
(2) = log ¢(r) +log(1 + ¥ (r)/¢(r)) < log2¢(r).

Let ¢t = log R and denote F(t) = T(R, f). Then F is a positive nonde-
creasing convex function of logr, by (2) we obtain

F(log ¢(r) +log(1 + ¢ (r)/¢(r))) — F(log ¢(r))
(log ¢(r) +log(1 + ¥(r)/(r))) — log ¢(r)
o Flog2¢(r)) — F(log é(r))
log 2¢(r) — log ¢(r)

Hence
F(log(é(r) +¥(r))) _ log(L+¢(r)/¢(r)) Fllog2¢(r)) — Flogé(r))
F(log ¢(r)) - log 2 F(log ¢(r))

Thus, for arbitrary € > 0, there exists r; > 7o, such that for r > r; we get

F(log(@(r) + $(r))) 1 (elos26(r) e
F(log o(r)) <1+ log 2 log(1 +4(r)/¢(r)) [W — 1}

1 (T) p+e pP— €
(3) St gz g (2T (@) T 1],

Since lim M = afa < 1), we have ¥(r) = (¢(r))*(+o(),

r—00 log ¢(r>
So, by (3) we obtain

F(log(¢(r) +¢(r))) _ 1 (g(r))t+o)

€ — A2
Flogor) = Thgz o) 2 @l
=1+ @ [;(p:;_ (¢(r))p—>\+3e+a(1+o(1))—1
4 1
(4) N ¢(T)1—a(1+o(1))]'

Since p — A < 1 — «, there exists g9 > 0 such that p — A+ 39 < 1 — a.
Take € = g we get

p—A+30+a(l+o(l))—1<l—a+a(l+o(l)—1—0(r — o)
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So, by (4) we have

— F(log((r) + (1))
5 F(log(6(r)

<1

and so

(o) + 9(1), f)
®) e (CCN

Therefore, by (1) and (5) we obtain

T(p(r) +(r), f) ~T(o(r), f)  (r—o0).

2.2, Since T(6(0). £) = T((9(r) ~ ¥() +9(0), ) and 575 0 (7 = o)
M — \T — OO O we ge
nd og 6(r) ( ). S get
o)) g
50— 0]~ 91— w(r)/o) |
log ¥ (r) log ()

— a (r — o00).

log(d(r) —(r))  log é(r) +log(1 — ¢(r)/6(r))
Thus, by 2.1 we see that
T(¢(r), f) = T((&(r) — D(r)) +b(r), f) ~ T($(r) — (r), £)(r — o).

2.3. If f(z) is an entire function, then log M (r, f) is a convex function of
logr. Similarly, we have

log M(¢(r) £4(r), f) ~log M(¢(r), f) ~ (r — o0).

This proves Theorem 1.

3. PROOF OF THEOREM 2
(i) Let

P(2) = amz™ + am-12"" + ..+ a1z 4 a0 (am #0),
Q(2) = bnz" +bp_12" '+ .+ b1z + by (b #0,n < m).
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Then
(6) P(2) + Q(2) = amz™ + cm_12™ "+ ...+ 12+ co.

Write A = |a,,| > 0 and choose p; such that py > |a;,—1]. Then there
exists ro > 0, such that, for any value a and r > rg

1 1
3 m m—-1 _ = < -
e E e
1
(7) §m~n<)\rm—|—u17’m_1,—f_a)-
This implies that
1
rm e X — gt )
1 1 ( "f—a
N(r,—)—N _—) > dt
(r’ 7(P) —a) (”” 7(P) —a) = t
ro
(8) + O(log ).
ds 41 dt
Put s = M — p1t™ !, then — = (14 ————— Jm— -
s i ) PHEI T ( +m()\t—,u1)>mt

Since 1 + — 1 1 (t — 00), for arbitrarily small e; > 0, we
m(At — p1)
may assume that
p1 1
1+ <

mAt—p1)  1—e1/2

for t > r¢. Thus
dt €1\ ds

9 — > (1 — —) —,t>19.
(9) m ;= 5 )% ZTo

Now, we take a such that f(z) — a has infinitely many zeros. Then for
sufficiently large r > rg, from (8) and (9) we deduce that

(10) N(r, ﬁ) > (1— 51)N<)\rm — ™ %) + O(log).
Similarly,

1 m o 1
(11) N(T,m) S (1+€1)N()\7‘ +,L617‘ 1,m> —|—O(10g7’)
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By Nevanlinna Theory, we can take two suitable values b; and by such
that

N (A ™ o) S T £ ™ ) (o)

f—0b
and .
N(r, m) ~T(r f(P)  (r— o0).

Thus for arbitrary small €5, there exists v > rg, such that, for » > ry, we
have

1
(1 —e)TWr™ £ puyr™ 1 f) < N()\rm + pyr™ L —)

f—h
(12) < (L+e) N £ ur™ =t f)
and
1 1
(13) (1 — 62)N(7‘, m) <T(r,f(P)) < (1+ 82)N(r, m)

From (10), (11), (12) and (13) we see that if » > ry > 71, then

(1=&)T(Ar™ — par™ ™, f) + O(logr) < T(r, f(P))
(14) < (1+e)TN™ + ppr™ 1 f) + O(log ),

where € = €(e1, e2) is arbitrary, with 0 < max{ey,e2} <& < 1.

(ii) By (6), we can choose ug such that ps > |¢;m—1]. By the same
reasoning as above, for arbitrary small ¢’ > 0, there exists ), > 0, such
that for all r > r{,

(1 —=NTAr™ — ppr™ 1, f) 4+ O(logr) < T(r, f(P + Q))
(15) < (L+NTOr™ + por™ 1, f) + O(log ).

Thus it follows from (14) and (15) that, for all sufficiently large values of
r?
(1 —e)T(Ar™ — par™ 1, f) + O(log )
(14T (Ar™ + porm=1, f) + O(logr)

T(r, f(P))
T(r, f(P+Q))

<

(1+&)T(Mr™ + urr™ 1 f) + O(log r) .
(L= )T — pgr1, ) + O(log)

—~
—_
D
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Take ¢(r) = Ar™, ;(r) = p;r™ 1 (i = 1,2), then iz((r)) -0 (r — oo,

r
i =1,2) and logv;(r)/log ¢(r) — (m —1)/m (r — o0,i =1,2).
Since py — Ay <1 —(m —1)/m =1/m, by Theorem 1 we have
TOr™, f) ~ T(Ar™ & g™ f) ~ TOr™ £ por™ 1, f) (r — 00).

Since ¢, ¢’ are arbitrary (0 <e < 1,0 <&’ < 1),

T(r, f(P+Q))~T(r, f(P))  (r—o0).

This proves Theorem 2.

4. PROOF OF COROLLARY 1

Suppose on the contrary Ay < oo, since py — Ay < 1/m, py < co. Thus,
by Theorem 2 we have

i T (P +Q)

L e

T(r,f(P+Q)

This contradicts the known condition lim =00
r—oo  T(r, f(P))

Hence Corollary 1 is proved.
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