GROWTH OF MEROMORPHIC FUNCTIONS

JIANWU SUN

ABSTRACT. In this paper, we prove a general result concerning the growth of meromorphic functions. Our condition is much weaker than that used by Sing-Patil. Our result contains and improves the results of Nevanlinna, Clunie and Goldberg-Ostrovoskii. As an application, we solve a problem proposed by C. C. Yang.

1. INTRODUCTION

This paper concerns the following results.

Theorem A (Nevanlinna [3]). Let f(z) be a meromorphic function of order ρ ($\rho < \infty$) and lower order λ , if $\rho - \lambda < 1$, then

$$T(r+1, f) \sim T(r, f) \qquad (r \to \infty).$$

Theorem B (Clunie [1]). Let f(z) be an entire function of order ρ ($\rho < \infty$). If $k > \rho - 1$, then

$$\log M(r, f) \sim \log M(r - r^{-k}, f) \qquad (r \to \infty).$$

Theorem C (Goldberg and Ostrovoskii [2]). Let f(z) be a meromorphic function of order ρ ($\rho < \infty$) and lower order λ , if $\rho - \lambda < 1$, then for all constants k, we have

$$T(r+k\log r, f) \sim T(r, f) \qquad (r \to \infty).$$

Theorem D (Singh and Patil [4]). Let f(z) be a meromorphic function of order ρ ($\rho < \infty$) and lower order λ . Let E be the set of those r for which

Received May 19, 1999.

1991 Mathematics Subject Classification. 30D35.

Key words and phrases. Meromorphic function, Order, Lower order, Growth.

T'(r, f) fails to exist and let E be bounded. Let $\phi(r)$ and $\psi(r)$ be two continuous positive increasing functions of r such that

- 1. $\lim_{r \to \infty} \psi(r) / \phi(r) = 0,$
- 2. $\lim_{r \to \infty} \log \psi(r) / \log \phi(r) = \alpha \ (\alpha \ge 0).$

If $\rho - \lambda < 1 - \alpha$, then

$$T(\phi(r) \pm \psi(r), f) \sim T(\phi(r), f) \qquad (r \to \infty).$$

We will omit the differentiability of T(r, f) and $\alpha \ge 0$ in Theorem D and obtain the following result:

Theorem 1. Let f(z) be a meromorphic function of order ρ ($\rho < \infty$) and lower order λ . Let $\phi(r)$ and $\psi(r)$ be two positive functions, and $\phi(r)$ be continuous and tend to ∞ , and $\phi(r), \psi(r)$ satisfy

- 1. $\lim_{r \to \infty} \psi(r) / \phi(r) = 0;$
- 2. $\lim_{r \to \infty} \log \psi(r) / \log \phi(r) = \alpha \ (\alpha < 1).$

If $\rho - \lambda < 1 - \alpha$, then

1.
$$T(\phi(r) \pm \psi(r), f) \sim T(\phi(r), f) \qquad (r \to \infty);$$

2. when f(z) is an entire function, we have

$$\log M(\phi(r) \pm \psi(r), f) \sim \log M(\phi(r), f) \qquad (r \to \infty).$$

Theorem 1 not only generalizes Theorem D but also contains and improves Theorem A, Theorem B and Theorem C. The fact is:

(1) Take $\phi(r) = r$ and $\psi(r) = 1$, we get

$$\lim_{r \to \infty} \psi(r) / \phi(r) = 0,$$

and

$$\lim_{r \to \infty} \log \psi(r) / \log \phi(r) = 0 = \alpha.$$

Hence by Theorem 1, if $\rho - \lambda < 1 - \alpha$, that is $\rho - \lambda < 1$, we obtain

$$T(r+1, f) \sim T(r, f) \qquad (r \to \infty).$$

This is the result of Theorem A.

(2) Take $\phi(r) = r$ and $\psi(r) = k \log r$, we have

$$\lim_{r \to \infty} \psi(r) / \phi(r) = 0,$$

and

$$\lim_{r \to \infty} \log \psi(r) / \log \phi(r) = \lim_{r \to \infty} \frac{\log k + \log \log r}{\log r} = 0 = \alpha.$$

Thus by Theorem 1, if $\rho - \lambda < 1 - \alpha$, that is $\rho - \lambda < 1$, we see that

$$T(r+k\log r, f) \sim T(r, f) \qquad (r \to \infty).$$

This is the result of Theorem C.

(3) Take $\phi(r) = r$ and $\psi(r) = r^{-k} (k > 0)$, then we get

$$\lim_{r \to \infty} \psi(r) / \phi(r) = 0,$$

and

$$\lim_{r \to \infty} \log \psi(r) / \log \phi(r) = \lim_{r \to \infty} \frac{-k \log r}{\log r} = -k = \alpha \ (<0).$$

So, if $k > \rho - 1$, that is $\rho - \lambda < 1 + k = 1 - \alpha$, by Theorem 1 we have for entire function f

$$\log M(r - r^{-k}, f) \sim \log M(r, f) \qquad (r \to \infty).$$

This is Theorem B.

Applying Theorem 1 we obtain following result:

Theorem 2. Let f(z) be a meromorphic function of order ρ ($\rho < \infty$) and lower order λ , let P(z) and Q(z) be two polynomials with deg P = m >deg Q. If $\rho - \lambda < 1/m$, then

$$T(r, f(P(z) + Q(z))) \sim T(r, f(P(z))) \qquad (r \to \infty).$$

Furthermore, C. C. Yang posed the following problem in [5]: Let f be a meromorphic function , if

$$\lim_{r \to \infty} \frac{T(r, f(z+1))}{T(r, f(z))} = \infty$$

can one prove that the order $\rho_f = \infty$ or furthermore, lower order $\lambda_f = \infty$?

From Theorem 2, we have the following result

Corollary 1. Let f(z) be a meromorphic function of order ρ and lower order λ , let P(z) and Q(z) be two polynomials with deg $P = m > \deg Q$, and $\rho - \lambda < 1/m$. If

$$\lim_{r \to \infty} \frac{T(r, f(P+Q))}{T(r, f(P))} = \infty.$$

Then

$$\rho_f = \lambda_f = \infty.$$

Remark. If we take P(z) = z, Q(z) = 1, then we get the answer to problem of C. C. Yang as follows.

Corollary 2. Let f be a meromorphic function of order ρ and lower order λ with $\rho - \lambda < 1$. If

$$\lim_{r \to \infty} \frac{T(r, f(z+1))}{T(r, f)} = \infty.$$

Then

$$\rho_f = \lambda_f = \infty.$$

2. Proof of Theorem 1

2.1. We first prove that $T(\phi(r) + \psi(r), f) \sim T(\phi(r), f)(r \to \infty)$ holds. Since T(r, f) is a nondecreasing continuous function of r, we can get

(1)
$$\lim_{\underline{r \to \infty}} \frac{T(\phi(r) + \psi(r), f)}{T(\phi(r), f)} \ge 1.$$

Thus, we need only to show that

$$\overline{\lim_{r \to \infty}} \frac{T(\phi(r) + \psi(r), f)}{T(\phi(r), f)} \le 1.$$

By our assumptions, there exists $r_0 > 0$, such that for $r > r_0$ we have

$$\psi(r) < \phi(r) < \phi(r) + \psi(r) < 2\phi(r).$$

Thus

(2)
$$\log \psi(r) < \log \phi(r) < \log(\phi(r) + \psi(r)) = \log \phi(r) + \log(1 + \psi(r)/\phi(r)) < \log 2\phi(r).$$

Let $t = \log R$ and denote F(t) = T(R, f). Then F is a positive nondecreasing convex function of $\log r$, by (2) we obtain

$$\begin{aligned} &\frac{F(\log \phi(r) + \log(1 + \psi(r)/\phi(r))) - F(\log \phi(r))}{(\log \phi(r) + \log(1 + \psi(r)/\phi(r))) - \log \phi(r)} \\ & \leq \frac{F(\log 2\phi(r)) - F(\log \phi(r))}{\log 2\phi(r) - \log \phi(r)} \,. \end{aligned}$$

Hence

$$\frac{F(\log(\phi(r) + \psi(r)))}{F(\log \phi(r))} \le 1 + \frac{\log(1 + \psi(r)/\phi(r))}{\log 2} \frac{F(\log 2\phi(r)) - F(\log \phi(r))}{F(\log \phi(r))} \cdot \frac{F(\log \phi(r))}{F(\log \phi(r))} + \frac{F(\log 2\phi(r))}{F(\log 2\phi(r))} + \frac{F(\log 2\phi(r))}{F($$

Thus, for arbitrary $\varepsilon > 0$, there exists $r_1 > r_0$, such that for $r > r_1$ we get

Since $\lim_{r\to\infty} \frac{\log \psi(r)}{\log \phi(r)} = \alpha(\alpha < 1)$, we have $\psi(r) = (\phi(r))^{\alpha(1+o(1))}$. So, by (3) we obtain

$$\frac{F(\log(\phi(r) + \psi(r)))}{F(\log\phi(r))} \leq 1 + \frac{1}{\log 2} \frac{(\phi(r))^{\alpha(1+\circ(1))}}{\phi(r)} \left[2^{\rho+\varepsilon}(\phi(r))^{\rho-\lambda+2\varepsilon} - 1 \right] \\
= 1 + \frac{1}{\log 2} \left[\frac{2^{\rho+\varepsilon}}{\phi(r)^{\varepsilon}} (\phi(r))^{\rho-\lambda+3\varepsilon+\alpha(1+\circ(1))-1} - \frac{1}{\phi(r)^{1-\alpha(1+\circ(1))}} \right].$$
(4)

Since $\rho - \lambda < 1 - \alpha$, there exists $\varepsilon_0 > 0$ such that $\rho - \lambda + 3\varepsilon_0 < 1 - \alpha$. Take $\varepsilon = \varepsilon_0$ we get

$$\rho - \lambda + 3\varepsilon_0 + \alpha(1 + \circ(1)) - 1 < 1 - \alpha + \alpha(1 + \circ(1)) - 1 \to 0 (r \to \infty)$$

So, by (4) we have

$$\overline{\lim_{r \to \infty}} \frac{F(\log(\phi(r) + \psi(r)))}{F(\log(\phi(r)))} \leq 1$$

and so

(5)
$$\overline{\lim_{r \to \infty}} \frac{T(\phi(r) + \psi(r), f)}{T(\phi(r), f)} \le 1.$$

Therefore, by (1) and (5) we obtain

$$T(\phi(r) + \psi(r), f) \sim T(\phi(r), f) \qquad (r \to \infty).$$

2.2. Since $T(\phi(r), f) = T((\phi(r) - \psi(r)) + \psi(r), f)$ and $\frac{\psi(r)}{\phi(r)} \to 0 \ (r \to \infty)$ and $\frac{\log \psi(r)}{\log \phi(r)} \to \alpha \ (r \to \infty)$. So we get

$$\frac{\psi(r)}{\phi(r) - \psi(r)} = \frac{\psi(r)}{\phi(r)(1 - \psi(r)/\phi(r))} \to 0 \ (r \to \infty),$$
$$\frac{\log \psi(r)}{\log(\phi(r) - \psi(r))} = \frac{\log \psi(r)}{\log \phi(r) + \log(1 - \psi(r)/\phi(r))} \to \alpha \ (r \to \infty).$$

Thus, by 2.1 we see that

$$T(\phi(r), f) = T((\phi(r) - \psi(r)) + \psi(r), f) \sim T(\phi(r) - \psi(r), f)(r \to \infty).$$

2.3. If f(z) is an entire function, then $\log M(r, f)$ is a convex function of $\log r$. Similarly, we have

$$\log M(\phi(r) \pm \psi(r), f) \sim \log M(\phi(r), f) \qquad (r \to \infty).$$

This proves Theorem 1.

3. Proof of Theorem 2

(i) Let

$$P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0 \quad (a_m \neq 0),$$

$$Q(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0 \quad (b_n \neq 0, n < m).$$

Then

(6)
$$P(z) + Q(z) = a_m z^m + c_{m-1} z^{m-1} + \dots + c_1 z + c_0.$$

Write $\lambda = |a_m| > 0$ and choose μ_1 such that $\mu_1 > |a_{m-1}|$. Then there exists $r_0 > 0$, such that, for any value a and $r \ge r_0$

(7)

$$m \cdot n\left(\lambda r^{m} - \mu_{1}r^{m-1}, \frac{1}{f-a}\right) \leq n\left(r, \frac{1}{f(P) - a}\right)$$

$$\leq m \cdot n\left(\lambda r^{m} + \mu_{1}r^{m-1}, \frac{1}{f-a}\right).$$

This implies that

$$N\left(r,\frac{1}{f(P)-a}\right) - N\left(r_0,\frac{1}{f(P)-a}\right) \ge \int_{r_0}^r \frac{m \cdot n\left(\lambda t^m - \mu_1 t^{m-1},\frac{1}{f-a}\right)}{t} dt$$

$$(8) \qquad \qquad + O(\log r).$$

Put $s = \lambda t^m - \mu_1 t^{m-1}$, then $\frac{ds}{s} = \left(1 + \frac{\mu_1}{m(\lambda t - \mu_1)}\right) m \frac{dt}{t}$. Since $1 + \frac{\mu_1}{m(\lambda t - \mu_1)} \to 1$ $(t \to \infty)$, for arbitrarily small ϵ

Since $1 + \frac{\mu_1}{m(\lambda t - \mu_1)} \to 1 \ (t \to \infty)$, for arbitrarily small $\varepsilon_1 > 0$, we may assume that

$$1 + \frac{\mu_1}{m(\lambda t - \mu_1)} < \frac{1}{1 - \varepsilon_1/2}$$

for $t \geq r_0$. Thus

(9)
$$m\frac{dt}{t} \ge \left(1 - \frac{\varepsilon_1}{2}\right)\frac{ds}{s}, t \ge r_0.$$

Now, we take a such that f(z) - a has infinitely many zeros. Then for sufficiently large $r \ge r_0$, from (8) and (9) we deduce that

(10)
$$N\left(r, \frac{1}{f(P) - a}\right) \ge (1 - \varepsilon_1) N\left(\lambda r^m - \mu_1 r^{m-1}, \frac{1}{f - a}\right) + O(\log r).$$

Similarly,

(11)
$$N\left(r, \frac{1}{f(P) - a}\right) \le (1 + \varepsilon_1) N\left(\lambda r^m + \mu_1 r^{m-1}, \frac{1}{f - a}\right) + O(\log r).$$

By Nevanlinna Theory, we can take two suitable values b_1 and b_2 such that

$$N\left(\lambda r^m \pm \mu_1 r^{m-1}, \frac{1}{f-b_1}\right) \sim T(\lambda r^m \pm \mu_1 r^{m-1}, f) \qquad (r \to \infty)$$

and

$$N\left(r, \frac{1}{f(P) - b_2}\right) \sim T(r, f(P)) \qquad (r \to \infty).$$

Thus for arbitrary small ε_2 , there exists $r_1 > r_0$, such that, for $r > r_1$, we have

(1-
$$\varepsilon_2$$
) $T(\lambda r^m \pm \mu_1 r^{m-1}, f) < N\left(\lambda r^m \pm \mu_1 r^{m-1}, \frac{1}{f-b_1}\right)$
(12) $< (1+\varepsilon_2)N(\lambda r^m \pm \mu_1 r^{m-1}, f)$

and

(13)
$$(1-\varepsilon_2)N\left(r,\frac{1}{f(P)-b_2}\right) < T(r,f(P)) < (1+\varepsilon_2)N\left(r,\frac{1}{f(P)-b_2}\right)$$
.

From (10), (11), (12) and (13) we see that if $r > r_2 \ge r_1$, then

(1-
$$\varepsilon$$
) $T(\lambda r^m - \mu_1 r^{m-1}, f) + O(\log r) < T(r, f(P))$
(14) $< (1+\varepsilon)T(\lambda r^m + \mu_1 r^{m-1}, f) + O(\log r),$

where $\varepsilon = \varepsilon(\varepsilon_1, \varepsilon_2)$ is arbitrary, with $0 < \max\{\varepsilon_1, \varepsilon_2\} < \varepsilon < 1$.

(ii) By (6), we can choose μ_2 such that $\mu_2 > |c_{m-1}|$. By the same reasoning as above, for arbitrary small $\varepsilon' > 0$, there exists $r'_0 > 0$, such that for all $r > r'_0$

(1-
$$\varepsilon'$$
) $T(\lambda r^m - \mu_2 r^{m-1}, f) + O(\log r) < T(r, f(P+Q))$
(15) $< (1 + \varepsilon')T(\lambda r^m + \mu_2 r^{m-1}, f) + O(\log r).$

Thus it follows from (14) and (15) that, for all sufficiently large values of r,

$$\frac{(1-\varepsilon)T(\lambda r^m - \mu_1 r^{m-1}, f) + O(\log r)}{(1+\varepsilon')T(\lambda r^m + \mu_2 r^{m-1}, f) + O(\log r)} \le \frac{T(r, f(P))}{T(r, f(P+Q))}$$

(16)
$$\leq \frac{(1+\varepsilon)T(\lambda r^m + \mu_1 r^{m-1}, f) + O(\log r)}{(1-\varepsilon')T(\lambda r^m - \mu_2 r^{m-1}, f) + O(\log r)}$$

Take $\phi(r) = \lambda r^m$, $\psi_i(r) = \mu_i r^{m-1}$ (i = 1, 2), then $\frac{\psi_i(r)}{\phi(r)} \to 0$ $(r \to \infty, i = 1, 2)$ and $\log \psi_i(r) / \log \phi(r) \to (m-1)/m$ $(r \to \infty, i = 1, 2)$. Since $\rho_f - \lambda_f < 1 - (m-1)/m = 1/m$, by Theorem 1 we have

$$T(\lambda r^m, f) \sim T(\lambda r^m \pm \mu_1 r^{m-1}, f) \sim T(\lambda r^m \pm \mu_2 r^{m-1}, f) \qquad (r \to \infty).$$

Since ε , ε' are arbitrary $(0 < \varepsilon < 1, 0 < \varepsilon' < 1)$,

$$T(r,f(P+Q))\sim T(r,f(P)) \qquad (r\to\infty).$$

This proves Theorem 2.

4. Proof of Corollary 1

Suppose on the contrary $\lambda_f < \infty$, since $\rho_f - \lambda_f < 1/m$, $\rho_f < \infty$. Thus, by Theorem 2 we have

$$\lim_{r \to \infty} \frac{T(r, f(P+Q))}{T(r, f(P))} = 1.$$

This contradicts the known condition $\lim_{r \to \infty} \frac{T(r, f(P+Q))}{T(r, f(P))} = \infty$. Hence Corollary 1 is proved.

References

- 1. J. Clunie, *The composition of entire and meromorphic functions*, Mathematical Essays dedicated to A. J. Macintyre, Ohio Univ. Press, 1970, 75-92.
- A. A. Goldberg, I. V. Ostrovoskii, The Distribution of Values of Meromorphic Function (Russian), Izdat "Nauka", Moscow, 1970.
- 3. R. Nevanlinna, Analytic Function, Springer-Verlag, New-York, 1970.
- A. P. Singh, P. M. Patil, A note on Nevanlinna characteristic function, Math. Stud. 59 (1991), 157-160.
- 5. C. C. Yang and C. T. Chuang, *Fix-Points and Theory of Factorization of Meromorphic Functions*, Peking University Press (China) 1988.

DEPARTMENT OF MATHEMATICS HUAIYIN TEACHER'S COLLEGE JIANGSU 223001, P. R. CHINA