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REMARKS ON HIMMELBERG-IDZIK’S
FIXED POINT THEOREM

SEHIE PARK AND DO HONG TAN

ABSTRACT. In this note we give simple proofs of generalizations of Him-
melberg fixed point theorem by applying the well-known KKM principle.

1. INTRODUCTION

For a long period, the Schauder-Tychonoff fixed point theorem has been
a very useful tool for the study of differential and integral equations and
other fields. Motivated by von Neumann’s classical works on game theory
and mathematical economics, Kakutani initiated the study of fixed points
of convex-valued upper semicontinuous multivalued maps (multimaps, for
short) in Euclidean spaces by showing that convex compact sets have the
fixed point property for such maps. The Kakutani theorem was generalized
for Banach spaces by Bohnenblust and Karlin, and for locally convex topo-
logical vector spaces by Fan and by Glicksberg. Moreover, Himmelberg [1]
extended and unified all of the above mentioned fixed point theorems to
compact multimaps, and later, Idzik [2] further generalized those theorems
for non-locally convex topological vector spaces. The Kakutani theorem
and its generalizations were applied to game theory, mathematical eco-
nomics, systems and control theory, coincidence theory, minimax theory,
variational inequalities, convex analysis, and many equilibrium theorems.
For references see Park [5-7].

In our previous work [9], we showed that the Knaster-Kuratowski-
Mazurkiewicz (simply KKM) theorem and the Schauder-Tychonoff fixed
point theorem are equivalent. Our aim in this paper is to give an ele-
mentary proof of generalizations of Himmelberg fixed point theorem by
applying the KKM theorem. Consequently, we show that our result is
equivalent to the Brouwer fixed point theorem, which can be now proved
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in an elementary way; for references see [5], [7]. Therefore, the proofs of
the above mentioned theorems (except Idzik’s) should be easily accessible
by every researcher or student of any fields in mathematics.

2. PRELIMINARIES

First we recall some notions and known facts used in this paper. The
following notion is due to Himmelberg [1]:

Definition 1. A nonempty subset Y of a topological vector space E is
said to be almost convex if for any neighborhood V of 0 in £ and for any
finite set {y1,¥2,...,yn} C Y, there exists a finite set {z1,29,...,2,} CY
such that, for eachi € {1,2,...,n}, z;—y; € V and co{z1,22,...,2,} C Y.

Clearly, the closure of an almost convex set is convex. Here “co” stands
for the convex hull of a set.

Definition 2. Let X, Y be topological spaces. A (single- or multi-valued)
map T : X — Y is called compact if T'(X) is contained in a compact subset

of Y.
The following is the celebrated KKM theorem [3]:

KKM principle. Let D be the set of vertices of a simplex S and F :
D — 25 a multimap with closed values such that

(1) coN C F(N) for each N C D.

Then () F(z) # 0.

zeD
Recall that a map satisfying (1) is called a KKM map.
We need the following result which is due to Shih [10, Theorem 1]:

Lemma 1. Let D be the set of vertices of a simplex S. If G : D — 2°
is a KKM map with open values, then there is a KKM map F : D — 2°
with closed values such that F(x) C G(x) for x € D.

From the KKM principle and Lemma 1, we immediately get

Lemma 2. Let X be a subset of a topological vector space, D a nonempty
finite subset of X such thatcoD C X, and F : D — 2% a KKM map with

open values. Then () F(z) # 0.
zeD

For the history of generalizations and applications of the open-valued
version (Lemma 2) of the KKM principle, see Park et al. [4], [8].
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3. THE RESULT

Applying Lemma 2 we shall prove the following

Theorem 1. Let X be a subset of a locally convex Hausdorff topological
vector space E andY an almost convex dense subset of X. LetT : X — 2%
be a compact upper semicontinuous multimap with nonempty closed values
such that T(y) is convex for ally € Y. Then T has a fixed point xg € X;
that is o € T(xo).

Proof. Let U be a convex neighborhood of the origin 0 in £. Then
there exists a symmetric convex open neighborhood V of 0 such that
V+V CU. Since K := T(X) is compact in X, there exists a finite subset

{z1,...,2n} C K C X such that K C | (z; + V). Moreover, since Y is
i=1

almost convex and dense in X, there exists a finite subset D = {y1,...,yn}
of Y such that y; — z; € V for each i = 1,...,n, and co{y1,...,yn} C Y.
In fact, since Y is dense in X, there is a subset {z1,...,z,} of Y such that

1
Zi — T; € §V for each 7. Since Y is almost convex, there exists a subset

1
{y1,...,yn} of Y such that y;—z; € §V for each i and co{y1,...,yn} C Y.

Since V' is convex, we have for each i,
i —x; = (yi —2i) + (2 — ) € %V—i—%VcV
For each i, let
Fly,)) ={z e X :T(x)N(x; +V) =0}

Since T' is upper semicontinuous, each F'(y;) is open in X. Moreover, we
have

DF(yi):{xEX:T(x)ﬂU(w¢+V)=@}=@

because T'(X) C K C |J (z; + V).
=1

7
Now we apply Lemma 2 to X with D defined as above. Since its
conclusion does not hold, F : D — 2% can not be a KKM map. That is,
there exist a subset {y;,,...,y;.} C D and an xy € co{y;,,...,¥i,} such

k —
that 2y ¢ (J F(yi,). Hence T'(xy) N (2, + V) # 0 for each j; and note
=1

J:
that

(2) wi, +V =wi, =y, +yi, +V Cyi, +V+V Cyy, + U
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Let L be the subspace of E generated by D and
M:={yeL:T(xv)N(y+U)#0}.

From (2) we get T'(xy) N (y;;, +U) # 0 and hence y;, € M for all j =
1,...,k. Since L, T(zy), and U are all convex, it is easily checked that M
is convex. Therefore, zyy € M and, by definition of M, we get T'(zy) N
(xy +U) #0.

So, for each neighborhood U of 0, there exist zy,yy € X such that
yu € T(zy) and yy € zy + U. Since T'(X) is relatively compact, we may
assume that the net {yy } converges to some xg € K. Since E is Hausdorff,
the net {zy } also converges to zy. Because T is upper semicontinuous with
closed values, the graph of T is closed in X x T(X) and hence we have
xo € T(xp). This completes our proof.

In particular, for Y = X, we obtain

Theorem 2. Let X be an almost convexr subset of a locally convex Haus-
dorff topological vector space. Then any compact upper semicontinuous
multimap T : X — 2% with nonempty closed convex values has a fized
point in X.

4. REMARKS

1. For the case X itself is almost convex, Theorem 1 is a particular case
of Idzik [2, Theorem 4.3] whose proof is not elementary and where T'(X)
is assumed to be convexly totally bounded instead of the local convexity
of the space E. Our proof of Theorem 1 is elementary, but does not work

for the proof of [2, Theorem 4.3]; see [9].

2. If X itself is compact, Theorem 1 reduces to Himmelberg [1, The-
orem 1|, whose proof is based on the Kakutani theorem. If X itself is
convex, Theorem 2 reduces to the so-called Himmelberg fixed point theo-
rem [1, Theorem 2], which includes theorems due to Brouwer, Schauder,
Tychonoff, Hukuhara, Kakutani, Bohnenblust-Karlin, Fan and Glicksberg.
Moreover, there were a number of generalizations of the Himmelberg the-
orem; see [6].

3. It is well-known that the Brouwer theorem and the KKM principle
are equivalent (proof is now well-known; see [9]). Therefore, all of the re-
sults mentioned in the above paragraph are actually equivalent. Moreover,
the KKM principle and its open-valued version (Lemma 2) are equivalent
thanks to the Brouwer theorem. It is elementary to deduce the KKM
principle from Lemma 2.
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4. If we assume, in addition that X is closed (in this case X must be
convex), the conclusion of Theorem 1 remains valid for multimap 7" : X —

2F satisfying T(z)NX # () for x € X. In this case we have not T'(X) C X,

but we can use the method in the proof of Theorem 1 for K = T(X)N X
with slight modifications. Even more simply, we can apply Theorem 1 to
the map 7" : X — 2% defined by T"(x) = T(z) N X for x € X.
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