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ON THE LOCALLY UNIFORM OPENNESS OF
POLYHEDRAL SETS

HUYNH THE PHUNG

Abstract. The paper is concerned with a geometrical property of poly-
hedral sets. Specifically, we shall prove that every polyhedral set (denoted
by M) is locally uniformly opening. As a consequence, we show that for
any set-valued map F defined on a polyhedral set M , F is locally Lipschitz
on M iff it is locally Lipschitz on each component of M .

1. Introduction

This paper deals with a geometrical property of a class of subsets in Rn

which we call polyhedral sets. They are unions of finitely many polyhedral
convex sets called components. Such subsets are usually encountered in
theory of optimization. For example, polyhedral multifunctions studied by
Robinson [4], Gowda and Sznajder [1] are set-valued maps whose graphs
are polyhedral sets. Also, it is well known [2] that the effective domain
of the solution map in linear complementarity problems is always a set of
this type. We say a subset M ⊂ Rn to be locally uniformly opening if
there exists δ > 0 such that for every x̄ ∈ M there is a neighbourhood U
around x̄ for which we can find u ∈ M satisfying [u, h] ⊂ M , [u, k] ⊂ M
and

‖h− k‖ ≥ δ(‖h− u‖+ ‖k − u‖) for all h, k ∈ M ∩ U,

where [x, y] denotes the closed segment co{x, y}.
We shall prove that every polyhedral set is locally uniformly opening.

As a consequence, we show that for any set-valued map F defined on a
polyhedral set M , F is locally Lipschitz on M iff it is locally Lipschitz on
each component of M . Recall that a set-valued map F is said to be locally
Lipschitz on a set M if for every x ∈ M there exist a positive number L
and a neighbourhood U of x such that for all x1, x2 ∈ M ∩ U we have

H(F (x1), F (x2)) ≤ L‖x1 − x2‖,
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where H stands for the Hausdorff distance.
The following example show that the conclusions mentioned above may

not hold when M is not a polyhedral set.

Example 1.1. Let M = M1 ∪M2 ⊂ R2, where

M1 := {(x, y) ∈ R2; x ≥ 0, y ≥ x2},
M2 := {(x, y) ∈ R2; x ≥ 0, y ≤ 0}.

M is not locally uniformly opening. Indeed, for any δ > 0 and any neigh-

bourhood B(O, r) around O = (0, 0) ∈ M we can choose h =
( 1

n
,

1
n2

)
,

k =
( 1

n
, 0

)
, where n > 2max

{1
δ
,
1
r

}
. Then h, k ∈ B(O, r) ∩ M and

u = O ∈ M is the unique point such that [u, h] ⊂ M , [u, k] ⊂ M . How-
ever, it is easy to verify that

‖h− k‖ < δ(‖h−O‖+ ‖k −O‖.

Now we consider the function F defined on M by

F (x, y) =
{

0 if (x, y) ∈ M2,

x if (x, y) ∈ M1.

Then F is locally Lipschitz on M1 and M2 but F is not locally Lipschitz
on M .

The next section gives some basic lemmas and the main result will be
presented in the last section.

2. Basic Lemmas

Lemma 2.1. Let c, u1, u2, . . . , um ∈ Rn, c 6= 0 and λi ≥ 0, i = 1, . . . , m,
such that

(2.1) c =
m∑

i=1

λiu
i.

Then there are linearly independent vectors {ui1 , . . . , uik} ⊂ {u1, . . . , um}
and numbers µj ≥ 0, j = 1, . . . , k satisfying

(2.2) c =
k∑

j=1

µju
ij .
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Proof. It suffices to prove that if (2.1) holds and u1, . . . , um are linearly
dependent then there exist µi ≥ 0, i = 1, . . . ,m, with at least one number
equals zero, such that

(2.3) c =
m∑

i=1

µiu
i.

The situation is trivial if λi = 0 for some i. So, we may assume that
λi > 0, i = 1, . . . ,m. Since u1, . . . , um are linearly dependent, there exist
α1, α2, . . . , αm, not all zero, such that

(2.4)
m∑

i=1

αiu
i = 0.

Suppose that

(2.5)
‖αi0‖
λi0

= max
{‖αi‖

λi
, i = 1, m

}
> 0.

By setting µi := λi − λi0αi

αi0

, i = 1, . . . ,m we have µi0 = 0 and

µi = λi

(
1− αi/λi

αi0/λi0

)
≥ λi

(
1− ‖αi/λi‖

‖αi0/λi0‖
)
≥ 0, i = 1, . . . , m.

Finally,
m∑

i=1

µiu
i =

m∑

i=1

λiu
i − λi0

αi0

m∑

i=1

αiu
i = c,

and the proof is complete.

Lemma 2.2. Let U = {u1, u2, . . . , um} ⊂ Rn. Then there exists γ > 0
such that for any class of linearly independent vectors {v1, . . . , vk} ⊂ U

and any numbers λi ≥ 0, i = 1, . . . , k, with
k∑

i=1

λi = 1, we have

(2.6)
∥∥∥

k∑

i=1

λiv
i
∥∥∥ ≥ γ.
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Proof. For each class of linearly independent vectors V = {v1, . . . , vk} ⊂
U , coV is compact and disjoints from O. Hence there exists γ(V ) > 0

such that for any λi ≥ 0, i = 1, . . . , k, with
k∑

i=1

λi = 1, we have

(2.7)
∥∥∥

k∑

i=1

λiv
i
∥∥∥ ≥ γ(V ).

To complete the proof we can choose

γ := min{γ(V )| V is a class of linearly independent vectors in U}.

Lemma 2.3. Let h, k, u be distinct vectors in Rn and denote

(2.8) p := min{‖h− u‖, ‖k − u‖},

(2.9) h̄ := u +
p

‖h− u‖ (h− u), k̄ := u +
p

‖k − u‖ (k − u),

(2.10) s̄ :=
h̄ + k̄

2
.

Then for all d ∈ Rn such that

(2.11) 〈u− s̄, d〉 < 0

there exists t ∈ (0, 1) satisfying

(2.12) ‖u + td− h‖+ ‖u + td− k‖ < ‖u− h‖+ ‖u− k‖.

Proof. By the definition of s̄ we have

(2.13) s̄ = u + µ (‖u− k‖(h− u) + ‖u− h‖(k − u)) ,

where µ =
p

2
1

‖u− h‖‖u− k‖ > 0. If (2.11) holds, then from (2.13) we

have

(2.14) ‖u− k‖〈u− h, d〉+ ‖u− h‖〈u− k, d〉 < 0.
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On the other hand,

(2.15) ‖u + td− h‖2 = ‖u− h‖2 + t2‖d‖2 + 2t〈u− h, d〉,

(2.16) ‖u + td− k‖2 = ‖u− k‖2 + t2‖d‖2 + 2t〈u− k, d〉.

Combining (2.15) and (2.16) one gets

‖u− k‖ · ‖u + td− h‖2 + ‖u− h‖ · ‖u + td− k‖2
= ‖u− k‖ · ‖u− h‖ · (‖u− h‖+ ‖u− k‖)

+ O(t2) + 2t (‖u− k‖ · 〈u− h, d〉+ ‖u− h‖ · 〈u− k, d〉) .

Thus, by (2.14) there exists t ∈ (0, 1) so that

‖u− k‖ · ‖u + td− h‖2 + ‖u− h‖ · ‖u + td− k‖2
< ‖u− k‖ · ‖u− h‖ · (‖u− h‖+ ‖u− k‖) .

Multiplying both sides of the inequality by
(‖u− h‖+ ‖u− k‖)
(‖u− h‖‖u− k‖) we obtain

(‖u + td− h‖2
‖u− h‖ +

‖u + td− k‖2
‖u− k‖

)
· (‖u− h‖+ ‖u− k‖)

< (‖u− h‖+ ‖u− k‖)2 .

(2.17)

Besides, by Bunhiakovskii inequality we have

(‖u + td− h‖2
‖u− h‖ +

‖u + td− k‖2
‖u− k‖

)
· (‖u− h‖+ ‖u− k‖)

≥ (‖u + td− h‖+ ‖u + td− k‖)2 ,

which together with (2.17) implies (2.12). The proof is complete.

3. The main result

We first recall [3] that a subset D ⊂ Rn is a polyhedral convex set if
there exist vectors a1, a2, . . . , ar ∈ Rn and numbers c1, c2, . . . , cr such that

(3.1) D =
{
x ∈ Rn|〈ai, x〉 ≤ ci, i = 1, . . . , r

}
.
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Then, for each k ∈ D, one has

(3.2) ND(k) = conco
{
ai|i ∈ J(k)

}
,

where J(k) := {j|〈aj , k〉 = cj} and ND(k) := {u ∈ Rn|〈u, v − k〉 ≤
0 for all v ∈ D}, the normal cone of D at k.

The following proposition is crucial in the sequel.

Proposition 3.1. Let H and K be polyhedral convex sets in Rn with
H ∩K 6= ∅. Then there exists ε > 0 such that for all h ∈ H and k ∈ K
there exists u ∈ H ∩K satisfying

(3.3) 〈h− u, k − u〉 ≤ (1− ε) · ‖h− u‖ · ‖k − u‖.

Proof. Assume that

H =
{
x ∈ Rn|〈ai, x〉 ≤ ci, i ∈ α := {1, . . . , l}} ,

K =
{
x ∈ Rn|〈bj , x〉 ≤ dj , j ∈ β := {1, . . . , m}} ,

where ai ∈ Rn, i ∈ α, bj ∈ Rn, j ∈ β. Without loss of generality we may
assume that ‖ai‖ = ‖bj‖ = 1 for all nonzero vectors ai, bj .

Applying Lemma 2.2 for the class U = {ai, bj ; i ∈ α, j ∈ β} we can
find γ > 0 such that for any subclass of linearly independent vectors
{ai, i ∈ ᾱ ⊂ α; bj , j ∈ β̄ ⊂ β} and any λi ≥ 0, i ∈ ᾱ, µj ≥ 0, j ∈ β̄, with

(3.4)
∑

i∈ᾱ

λi +
∑

j∈β̄

µj = 1

we have

(3.5)
∥∥∥

∑

i∈ᾱ

λia
i +

∑

j∈β̄

µjb
j
∥∥∥ ≥ γ.

Clearly, γ ∈ (0, 1). We shall prove that the assertion of the proposition is
true with

(3.6) ε = γ2.

Take k ∈ K, h ∈ H. If h ∈ K (respectively, k ∈ H) then (3.3) holds
immediately by choosing u = h (respectively, u = k). Now suppose that
h ∈ H \K and k ∈ K \H. Consider a functional φ defined on Rn by

(3.7) φ(v) := ‖h− v‖+ ‖k − v‖, v ∈ Rn.
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It is easy to verify that φ is convex, continuous and

(3.8) lim
‖v‖→+∞

φ(v) = +∞.

On the other hand, H ∩K is a nonempty closed convex subset in Rn.
It follows that there exists u ∈ H ∩K such that

(3.9) φ(v) ≥ φ(u) for all v ∈ H ∩K.

If 〈h−u, k−u〉 ≤ 0 then (3.3) holds. So, we may assume that 〈h−u, k−u〉 >
0 and we denote by ν ∈ [0, 1) the number with the property

(3.10) 〈h− u, k − u〉 = (1− ν) · ‖h− u‖ · ‖k − u‖.

Now choose p, h̄, k̄, s̄ as in Lemma 2.3. It is easy to see that

(3.11) h̄ ∈ [u, h] ⊂ H, k̄ ∈ [u, k] ⊂ K,

and from (2.9), (3.10) we get

(3.12) 〈h̄− u, k̄ − u〉 = (1− ν) · ‖h̄− u‖ · ‖k̄ − u‖ = (1− ν)p2.

We shall prove that

(3.13) 〈u− s̄, v − u〉 ≥ 0 for all v ∈ H ∩K.

Indeed, otherwise there is v̄ ∈ H ∩K such that 〈u− s̄, v̄ − u〉 < 0. Then,
by virtue of Lemma 2.3 there exists t ∈ (0, 1) satisfying

(3.14) ‖u + t(v̄ − u)− h‖+ ‖u + t(v̄ − u)− k‖ < ‖u− h‖+ ‖u− k‖.

But from u, v̄ ∈ H ∩ K we get u + t(v̄ − u) = (1 − t)u + tv̄ ∈ H ∩ K.
Therefore, (3.14) conflicts with (3.9).

Since H ∩K =
{
x ∈ Rn|〈ai, x〉 ≤ ci, i ∈ α; 〈bj , x〉 ≤ dj , j ∈ β

}
. It fol-

lows from (3.13) that

(3.15) s̄− u ∈ NH∩K(u) = conco{ai, bj ; i ∈ α1, j ∈ β1},

where

(3.16) α1 := {i ∈ α|〈ai, u〉 = ci}, β1 := {j ∈ β|〈bj , u〉 = dj}.
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If s̄ − u = 0 then h̄ − u = −(k̄ − u), which contradicts (3.12). So
s̄ − u 6= 0. Now, by Lemma 2.1 there exists ᾱ ⊂ α1, β̄ ⊂ β1 and λi ≥ 0,
i ∈ ᾱ, µj ≥ 0, j ∈ β̄, such that the class {ai, bj ; i ∈ ᾱ, j ∈ β̄} is linearly
independent and

(3.17) s̄− u =
∑

i∈ᾱ

λia
i +

∑

j∈β̄

µjb
j .

Since s̄− u 6= 0, one gets

(3.18) η :=
∑

i∈ᾱ

λi +
∑

j∈β̄

µj > 0,

and hence (s̄−u)/η ∈ co
{
ai, bj ; i ∈ ᾱ, j ∈ β̄

}
. By the choice of γ we have

‖(s̄− u)/η‖ ≥ γ or, equivalently,

(3.19) ‖s̄− u‖ ≥ ηγ.

Besides, it follows from (3.12) that

‖s̄− u‖2 =
1
4
‖h̄ + k̄ − 2u‖2 =

1
4

(‖h̄− u‖2 + ‖k̄ − u‖2 + 2〈h̄− u, k̄ − u〉)

=
1
4

(
2p2 + 2(1− ν)p2

)
= p2

(
1− ν

2

)

and

‖h̄− k̄‖2 = ‖h̄− u‖2 + ‖k̄ − u‖2 − 2〈h̄− u, k̄ − u〉
= 2p2 − 2(1− ν)p2 = 2νp2.

These imply

(3.20) ‖s̄− u‖ = p
√

1− ν/2

and

(3.21) ‖h̄− k̄‖ = p
√

2ν.

On the other hand, ‖s̄− u‖2 can be rewritten as follows

‖s̄− u‖2 =
〈
s̄− u,

∑

i∈ᾱ

λia
i +

∑

j∈β̄

µjb
j
〉
.
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Since h̄ ∈ H, k̄ ∈ K so that 〈ai, h̄ − u〉 ≤ 0, 〈bj , k̄ − u〉 ≤ 0 for all i ∈ ᾱ,
j ∈ β̄, we have

‖s̄− u‖2 =
1
2

〈
h̄ + k̄ − 2u,

∑

i∈ᾱ

λia
i +

∑

j∈β̄

µjb
j
〉

=
1
2

( ∑

i∈ᾱ

λi〈ai, k̄ − h̄〉+ 2
∑

i∈ᾱ

λi〈ai, h̄− u〉

+
∑

j∈β̄

µj〈bj , h̄− k̄〉+ 2
∑

j∈β̄

µj〈bj , k̄ − u〉
)

≤ 1
2

( ∑

i∈ᾱ

λi〈ai, k̄ − h̄〉+
∑

j∈β̄

µj〈bj , h̄− k̄〉
)

≤ 1
2
‖h̄− k̄‖

( ∑

i∈ᾱ

λi‖ai‖+
∑

j∈β̄

µj‖bj‖
)

=
η

2
‖h̄− k̄‖.(3.22)

Combining (3.19)-(3.22) we obtain

η

2
p
√

2ν =
η

2
‖h̄− k̄‖ ≥ ‖s̄− u‖2 ≥ ηγp

√
1− ν/2.

It follows that
ν

2
≥ γ2

(
1 − ν

2
)
, and hence ε = γ2 ≤ ν

2− ν
≤ ν. This

together with (3.10) gives

〈h− u, k − u〉 ≤ (1− ε)‖h− u‖ · ‖k − u‖.
The proof is complete.

Corollary 3.2. Let H and K be polyhedral convex sets in Rn with H∩K 6=
∅. Then there exixts δ > 0 such that for all h ∈ H, k ∈ K there exists
u ∈ H ∩K satisfying

(3.23) ‖h− k‖ ≥ δ(‖h− u‖+ ‖k − u‖).
Proof. Indeed, from (3.3) we have

‖h− k‖2 = ‖h− u‖2 + ‖k − u‖2 − 2〈h− u, k − u〉
≥ ‖h− u‖2 + ‖k − u‖2 − 2(1− ε)‖h− u‖ ‖k − u‖
= (1− ε)(‖h− u‖ − ‖k − u‖)2 + ε(‖h− u‖2 + ‖k − u‖2)
≥ ε

2
(‖h− u‖+ ‖k − u‖)2.
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This implies that (3.23) holds with δ =
√

ε/2, and the proof is complete.

The following theorem is a generalization of Corollary 3.2.

Theorem 3.3. All polyhedral sets in Rn are locally uniformly opening.

Proof. Let M be an arbitrary polyhedral set, whose components are Ki,
i = 1, . . . , s. By virtue of Corollary 3.2 for each pair Ki, Kj with Ki∩Kj 6=
∅ there exists δij > 0 such that for all ki ∈ Ki, kj ∈ Kj there exists
u ∈ Ki ∩Kj satisfying

‖ki − kj‖ ≥ δij(‖ki − u‖+ ‖kj − u‖).

We set
δ = min{δij : 1 ≤ i ≤ j ≤ s, Ki ∩Kj 6= ∅}.

Since Ki, i = 1, . . . , s are closed, for every x ∈ M we can choose r > 0
small enough such that

(3.24) B(x, r) ∩Ki = ∅ whenever Ki 63 x.

Now take arbitrary h, k ∈ M ∩ B(x, r). It follows that h ∈ Ki ∩ B(x, r)
and k ∈ Kj ∩ B(x, r) for some i, j. From (3.24) we have x ∈ Ki, x ∈ Kj

and then Ki ∩Kj 6= ∅. Hence, there exists u ∈ Ki ∩Kj ⊂ M such that

(3.25) ‖h− k‖ ≥ δij(‖h− u‖+ ‖k − u‖) ≥ δ(‖h− u‖+ ‖k − u‖).

Besides, it is obvious that [h, u] ⊂ Ki ⊂ M and [k, u] ⊂ Kj ⊂ M . The
proof is complete.

Corollary 3.4. Let F be a set-valued map from a polyhedral set M ⊂ Rn

into Rm, locally Lipschitz on each component of M . Then F is locally
Lipschitz on M .

Proof. Assume that M =
s∪

i=1
Ki with Ki being polyhedral convex sets. For

each x ∈ M we set I(x) := {i|x ∈ Ki}. Since F is local Lipschitz on each
Ki, there exists Li > 0, ri > 0, i ∈ I(x) such that ∀x1, x2 ∈ Ki ∩B(x, ri)
we have

(3.26) H(F (x1), F (x2)) ≤ Li‖x1 − x2‖.
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Besides, from the proof of Theorem 3.3 there exixts δ > 0, r > 0 such that
for all h, k ∈ M ∩B(x, r), there exists u ∈ M satisfying

(3.27) [u, h] ⊂ Ki, [u, k] ⊂ Kj for some i, j ∈ I(x)

and

(3.28) ‖h− k‖ ≥ δ(‖u− h‖+ ‖u− k‖).

One sets

(3.29) r̄ :=
δ

δ + 1
min {r,min{ri, i ∈ I(x)}}

and

(3.30) L :=
1
δ

max{Li, i ∈ I(x)}.

Now for all h, k ∈ B(x, r̄) ∩M there exists u ∈ M satisfying (3.27) and
(3.28). Hence

2‖u− x‖ ≤ ‖u− h‖+ ‖h− x‖+ ‖u− k‖+ ‖k − x‖

≤ 1
δ
‖h− k‖+ 2r̄ ≤ 2r̄

(1 + δ

δ

)
.

This together with (3.27) and (3.29) imply that u ∈ B(x, ri)∩Ki. On the
other hand, h ∈ B(x, r̄) ∩Ki ⊂ B(x, ri) ∩Ki. From (3.26) we get

H(F (u), F (h)) ≤ Li‖u− h‖,

and, analogously,
H(F (u), F (k)) ≤ Lj‖u− k‖.

Finally, one gets

H(F (h), F (k)) ≤ H(F (h), F (u)) +H(F (u), F (k))

≤ Li‖u− h‖+ Lj‖u− k‖ ≤ δL(‖u− h|+ ‖u− k‖)
≤ L‖h− k‖.

Since h, k are taken arbitrarily in M ∩B(x, r̄) it implies that F is locally
Lipschitz on M and the corollary is proved.
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