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DEFICIENCIES OF COMPOSITE ENTIRE FUNCTIONS

JIANWU SUN

Abstract. In this paper we generalize a result of Goldstein.

1. Introduction

Goldstein [4] proved the following result:
Let g(z) be a polynomial and f(z) a meromorphic function such that

T (r, f) = O((log r)α) for some α > 1. Then for any value of a, we have

δ(a, f(g)) = δ(a, f).

In this paper we generalize the condition T (r, f) = O((log r)α) to the
form T (r, f) = O(e(log r)α

) and replace the g(z) by a function g with
T (r, g) = O((log r)β) (0 < α < 1, β > 1, αβ < 1) and obtain the
following result:

Theorem 1. Let f and g be two transcendental entire functions with
T (r, f) = O(e(log r)α

) and T (r, g) = O((log r)β), where 0 < α < 1, β > 1
and αβ < 1. Then for any value of a 6= ∞ we have

δ(a, f(g)) = δ(a, f).

2. Preliminaries

We shall need the following lemmas

Lemma 1 [5]. Let f(z) be an entire function. For 0 ≤ r < R < ∞, we
have

T (r, f) ≤ log+ M(r, f) ≤ R + r

R− r
T (R, f).
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Lemma 2 [6]. Let f(z) and g(z) be two entire functions with g(0) = 0.
Then for all r > 0, we have

T (r, f(g)) ≤ T (M(r, g), f).

Lemma 3 [2]. Let f and g be two entire functions and g(0) = 0. Then

M(r, f(g)) ≥ M((1− o(1))M(r, g), f) (r →∞, r 6∈ E),

where E is a set of finite logarithmic measure of r.

Lemma 4 [1]. Let f be an entire function of order zero and z = reiθ.
Then for any ζ > 0, η > 0, there exist R0 = R0(ζ, η), k = k(ζ, η) such
that for all R > R0,

log |f(reiθ)| −N(2R)− log |c| > −kQ(2R), ζR ≤ r ≤ R,

except in a set of circles enclosing the zeros of f , the sum of whose radii
is at most ηR, where

Q(r) = r

∞∫

r

n(t, 1/f)
t2

dt,

N(r) =

r∫

0

n(t, 1/f)
t

dt.

Lemma 5. Let T1(r) and T2(r) be two nonnegative nondecreasing func-
tions of r with

T1(r) = O(T2(r)) (r →∞).

Then

(i) lim
r→∞

log+T1(r)
log r

≤ lim
r→∞

log+T2(r)
log r

,

(ii) lim
r→∞

log+T1(r)
log r

≤ lim
r→∞

log+T2(r)
log r

·

Lemma 6. Let φ(r) and H(r) be two positive nondecreasing and con-
tinuous functions which tend to ∞ as r → ∞, A = A(r) > 1, and
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φ(Ar)
φ(r)

→ c(r → ∞) (c ≥ 1). Let lim
r→∞

log+φ(r)
log r

= 0. If H(r) = O(φ(r)),

there exists r0 > 1 such that
H(Ar)
H(r)

is upper bounded in [r0, +∞).

Proof. Suppose that
H(Ar)
H(r)

is not bounded from above in [r0, +∞). Then

there exists a sequence
{
rn

}
such that rn → ∞ (n → ∞). For arbitrary

G > 0 there exists a natural number n0 such that for n > n0 we have

(1)
H(Arn)
H(rn)

> G.

Put lim
r→∞

H(r)
φ(r)

= k. Then 0 ≤ k < +∞. We distinguish two cases.

1. k 6= 0. By (1) we obtain

H(Arn)
φ(Arn)

> G
H(rn)
φ(rn)

φ(rn)
φ(Arn)

·

Take G = 2c. Since lim
r→∞

log+φ(r)
log r

= 0, by lemma 5 we have

lim
r→∞

log+H(r)
log r

= 0.

So φ(r) and H(r) are of regular growth. In addition, φ(r) and H(r) are
two nondecreasing continuous functions. Thus

lim
n→∞

H(Arn)
φ(Arn)

≥ G lim
n→∞

H(rn)
φ(rn)

lim
n→∞

φ(rn)
φ(Arn)

,

i.e., k ≥ 2c(1/c)k = 2k. This is a contradiction.

2. k = 0. Then lim
r→∞

H(r)
φ(r)

= 0. Let G = 4c. By (1) we get
H(Arn)
H(rn)

>

4c for n > n0. So, for arbitrary natural number m, we have

(2) H(Amrn) > 4cH(Am−1rn) > · · · > (4c)mH(rn).

Since lim
n→∞

φ(Arn)
φ(rn)

= c, taking ε0 = c > 0, there exists n1 > n0 such that

for n > n1 we obtain
∣∣∣φ(Arn)

φ(rn)
− c

∣∣∣ < ε0 = c,

i.e. φ(Arn) < 2cφ(rn).
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Thus, for arbitrary natural number m, we get

(3) φ(Amrn) < 2cφ(Am−1rn) < · · · < (2c)mφ(rn).

Take n = n2 > n1 > n0. By (2) and (3) we have

(4)
H(Amrn2)
φ(Amrn2)

>
(4c)mH(rn2)
(2c)mφ(rn2)

= 2m H(rn2)
φ(rn2)

→∞ (m →∞)

As m → ∞, we obtain Amrn2 → ∞. So, (4) is a contradiction to

lim
r→∞

H(r)
φ(r)

= 0.

This completes the proof of the Lemma 6.

Lemma 7. Let f be a transcendental entire function with T (r, f) =
O(e(log r)α

) (0 < α < 1). Then
(i) T (r, f) ∼ logM(r, f) (r →∞, r 6∈ E),
(ii) T (δr, f) ∼ T (r, f) (r →∞, b ≥ 2, r 6∈ E),

where E is a set of finite logarithmic measure.

Proof. We may assume that f(0) = 1. Otherwise, we only need to make
a transformation

F (z) = f(z)− f(0) + 1.

By Jeesen’s theorem

(5) N(r, 1/f) =

r∫

0

n(t, 1/f)
t

dt =
1
2π

2π∫

0

log|f(reiθ)|dθ ≤ logM(r, f),

for r > 1 and A > 1. By (5) we have

n(r, 1/f)logA ≤
Ar∫

r

n(t, 1/f)
t

dt ≤ N(Ar, 1/f) ≤ logM(Ar, f).

So

(6) n(r, 1/f) ≤ logM(Ar, f)
log A

·

Since T (r, f) = O(e(log r)α) (0 < α < 1), by Lemma 1 we get

(7) log M(r, f) = O(e(log r)α

).
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Take A = rσ(r) and σ(r) =
1

(log r)α
. By (6) we obtain

(8) n(r, 1/f) ≤ log M(r1+σ(r), f)
σ(r)log r

·

Therefore, putting r = eu we have

e(log r1+σ(r))α

r1/2σ(r)log r
=

e(1+ 1
(log r)α )α(log r)α

r1/2(log r)1−α

=
e(1+1/uα)αuα

(eu)1/2u1−α

=
1

u1−αeuα( 1
2 u1−α−(1+1/uα)α)

·(9)

Since 0 < α < 1, for sufficiently large value of u we have
1
2
u1−α − (1 +

1/uα)α > 0 and
1
2
u1−α − (1 + 1/uα)α) increases. By (9), for sufficiently

large of r,
e(log r1+σ(r))α

r1/2σ(r)log r
decreases, and by (8) and (7) we have

Q(r) = r

+∞∫

r

n(t, 1/f)
t2

dt

≤ r

+∞∫

r

logM(t1+σ(t), f)
t2σ(t)log t

dt

= lim
b→+∞

r

b∫

r

O(e(log t1+σ(t))α

)
t2σ(t)log t

dt

= lim
b→+∞

O
(
r

b∫

r

e(log t1+σ(t))α

)
t2σ(t)log t

dt
)

≤ r1/2O(e(log r1+σ(r))α

)
σ(r)log r

+∞∫

r

t−3/2dt

=
2log M(r1+σ(r), f)

σ(r)log r
·(10)
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Let φ(r) = e(log r)α

(0 ≤ α < 1, β > 1), A = rσ(r) and σ(r) =
1

(log r)α
.

Then

φ(Ar)
φ(r)

=
e(log r1+σ(r))α

e(log r)α

= e(log r)α[(1+σ(r))α−1]

= e(log r)α ασ(r)(1+o(1))

= e(log r)α α 1
(log r)α (1+o(1)) −→ eα(≥ 1) (r →∞).(11)

By (7), log M(r, f) = O(φ(r)) with lim
r→∞

log+φ(r)
log r = 0 and logM(r, f) is

a nondecreasing continuous functions. By (10), (11) and Lemma 5 there
exists L > 0 for r > r1 > r0 such that

Q(r)
log M(r, f)

≤ 2 log M(r1+σ(r), f)
σ(r)log r logM(r, f)

=
log M(Ar, f)
log M(r, f)

2
σ(r)log r

≤ 2L

σ(r)log r

=
2L

(log r)1−α
→ 0 (r →∞).

So

(12) Q(r) = o(log M(r, f)).

Since T (r, f) = O(e(log r)α

), the order ρ of f is equal to zero, n(r, 1/f) =
o(r) and

log M(r, f) ≤ log
+∞∏
n=1

(1 + r/rn)

=

+∞∫

0

log(1 + r/t)dn(t, 1/f)

≤
+∞∫

0

r

t
dn(t, 1/f)
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= r

+∞∫

0

n(t, 1/f)
t(t + r)

dt

= r
( r∫

0

+

+∞∫

r

)n(t, 1/f)
t(t + r)

dt

≤ r
1
r

r∫

0

n(t, 1/f)
t

dt + r

+∞∫

r

n(t, 1/f)
t2

dt

= N(r) + Q(r).(13)

So, by Lemma 4, (12) and (13) we obtain

log |f(reiθ)| > N(2R)− kQ(2R) (ζR ≤ r ≤ R, r 6∈ E)

= N(2R) + Q(2R)− (k + 1)Q(2R)

≥ log M(2R, f)− (k + 1) ◦ (log M(2R, f))

= log M(2R, f)(1− o(1))(14)

≥ log M(r, f)(1− o(1)),(15)

where E is a set finite logarithmic measure.
On the other hand,

(16) log|f(z)| ≤ log M(r, f) ≤ log M(δr, f) (|z| = r, δ ≥ 2).

In (14), let 2R = δr, δ ≥ 2. Then from (14), (15) and (16) it follows that

log |f(z)| ∼ log M(δr, f) (r →∞, r 6∈ E),(17)

log |f(z)| ∼ log M(r, f) (r →∞, r 6∈ E).(18)

By (18), for sufficiently large value of r, we have

m(r, f) =
1
2π

2π∫

0

log+|f(reiθ)|dθ

=
1
2π

2π∫

0

log M(r, f)(1 + o(1))dθ

= logM(r, f)(1 + o(1)) (r →∞, t 6∈ E)
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So

(19) lim
r→∞

T (r, f)
log M(r, f)

= 1 (r 6∈ E).

by (17) and (18) we get

(20) log M(δr, f) ∼ log M(r, f) (r →∞, r 6∈ E, δ ≥ 2)

By (19) and (20) Lemma 7 is proved.

3. Proof of Theorem 1

By Lemma 2 we have

(21) T (r, f(g)) ≤ T (M(r, g), f) = O(elog M(r,g))α

).

Since T (r, g) = O((log r)β), by Lemma 1 we obtain

logM(r, g) = O((log r)β).

So

T (r, f(g)) ≤ O(e(log M(r,g))α

) = O(e(O((log r)β))α

) = O(eO((log r)αβ)).

Since O((log r)αβ) ≤ K(log r)αβ (K > 0), there exists r0 > 1 and µ > 0
(αβ < µ < 1) such that for r > r0 we get K(log r)αβ < (log r)µ. So

T (r, f(g)) ≤ O(eO((log r)αβ)) < O(e(log r)µ

),

where αβ < µ < 1, i.e.

T (r, f(g)) = O(e(log r)µ

) (0 < αβ < µ < 1).

Thus, by Lemma 7 we have

(22) T (r, f(g)) ∼ log M(r, f(g)) (r →∞, r 6∈ E),

where E is a set of finite logarithmic measure, and

(23) lim
r→∞

T
(1

8
M(r, g), f

)
/T (M(r, g), f) = 1 (r 6∈ E).
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On the other hand, we may assume g(0) = b, G(z) = g(z) − b, F (z) =
f(z + b). Then

G(0) = g(0)− b = 0

F (G(z)) = f(G(z) + b) = f(g(z)).

By (22), (23), Lemma 3 and Lemma 7, for sufficiently large values of r,
we obtain

T (r, f(g)) = T (r, F (G))

= logM(r, F (G))(1 + o(1))

≥ logM((1− o(1))M(r,G), F )(1 + o(1))

≥ logM
(1
4
M(r,G), F

)
(1 + o(1))

= logM
(1
4
M(r, g − b), F

)
(1 + o(1))

≥ logM
(1
8
M(r, g), f

)
(1 + o(1))

= T
(1
8
M(r, g), f

)
(1 + o(1))

= T (M(r, g), f)(1 + o(1)) (r 6∈ E).(24)

Thus, by (21) and (24) we get

T (r, f(g)) ∼ T (M(r, g), f) (r →∞, r 6∈ E).

Hence, for arbitrary small ε > 0, there exists r0 > 0 such that for r > r0,
we have

(25) (1− ε)T (M(r, g), f) < T (r, f(g)) < (1 + ε)T (M(r, g), f).

By Nevanlinna Theory, except in a set of capacity zero, for arbitrary
complex number a we get

N
(
r,

1
f(g)− a

)
∼ T (r, f(g)) (r →∞),

and
N

(
M(r, g),

1
f − a

)
∼ T (M(r, g), f) (r →∞).
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So there exists r1 > r0 > 0 such that for r > r1 we obtain

(26) (1− ε)T (r, f(g)) < N
(
r,

1
f(g)− a

)
< (1 + ε)T (r, f(g)),

and

(1− ε)N
(
M(r, g),

1
f − a

)
< T (M(r, g), f)

< (1 + ε)N
(
M(r, g),

1
f − a

)
·(27)

Thus, by (26), (25) and (27), there exists r2 > r1 > 0 such that for r > r2,
we have

(1− ε′)N
(
M(r, g),

1
f − a

)
< N

(
r,

1
f(g)− a

)

< (1 + ε′)N
(
M(r, g),

1
f − a

)
,(28)

where ε′ = ε′(ε) and 0 < ε < ε′ < 1. Since ε, ε′ are arbitrary, by (25) and
(28) we get

lim
r→∞,r 6∈E

N
(
r,

1
f(g)− a

)

T (r, f(g))
≤ lim

r→∞,r 6∈E

(1 + ε′)N
(
M(r, g),

1
f − a

)

(1− ε)T (M(r, g), f)
= 1− δ(a, f),

and

lim
r→∞,r 6∈E

N
(
r,

1
f(g)− a

)

T (r, f(g))
≥ lim

r→∞,r 6∈E

(1− ε′)N
(
M(r, g),

1
f − a

)

(1 + ε)T (M(r, g), f)
= 1− δ(a, f).

So we have
δ(a, f(g)) = δ(a, f).

This is the proof of Theorem 1.
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