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SOME COLLECTIONS OF FUNCTIONS
DENSE IN AN ORLICZ SPACE

TRUONG VAN THUONG

Abstract. This paper presents sufficient conditions for a translation
invariant subspace of L1(lR

n)∩LΦ(lRn) to be dense in the Orlicz space
LΦ(lRn).

Introduction

Let ϕ be a function defined on lRn and a be a function defined on ZZn.
Their semi-discrete convolution [7] is defined by, for any x ∈ lRn,

ϕ ∗′ a(x) =
∑

α∈ZZn

ϕ(x− α)a(α),

for which the series converges absolutely. Denote by `0(ZZn) the space
of all finitely supported functions on ZZn and S0(ϕ) the image of `0(ZZn)
under ϕ∗′. If ϕ ∈ C(lRn) then ϕ ∗′ a ∈ C(lRn).

A collection F of functions on lRn is called shift invariant [7] if for each
f ∈ F, α ∈ ZZn, f(. + α) ∈ F. Then S0(ϕ) is a linear span of the integer
translates of ϕ and is shift invariant. A set F is called translation invariant
if

τt : f −→ f(. + t)

maps F into F for each t ∈ lRn and F is dilation invariant if

σh : f −→ f(h−1.)

maps F into itself for each h > 0. Denote

Received January 26, 1999; in revised form March 26, 2000.
1991 Mathematics Subject Classification. 46F99, 46E30.
Key words and phrases. Translation invariant, Fourier transform, theory of Orlicz
spaces.
Supported by the National Basic Research Program in Natural Science.



196 TRUONG VAN THUONG

Uh =
∞⋃

j=1

σj
hS0(ϕ).

The problem of finding sufficient conditions on a collection of functions
generated by translations of a single function to be dense in Lp(lRn) or
C0(lRn) was studied by Kang Zhao in [7]. He showed that for a subspace
which is generated by Uh, where ϕ satisfies some certain conditions, the
spanUh is dense in Lp(lRn) or C0(lRn). This leads to the natural question
under what conditions on the collection Uh and function ϕ, the linear span
of Uh is dense in the Orlicz space LΦ(lRn)?

In this paper, modifying the method of [7] we give some sufficient con-
ditions for a collection of functions generated by translations of a single
function in L1(lRn) ∩ LΦ(lRn), to be dense in LΦ(lRn). We have to over-
come some difficulties because C∞0 (lRn) is dense in Lp(lRn) but C∞0 (lRn)
is not generally dense in LΦ(lRn). Moreover, the results of this paper are
generalizations of the ones given by Kang Zhao in [7].

Results

Let Φ(t) : [0, +∞) −→ [0, +∞] be an arbitrary Young function, i.e.,
Φ(0) = 0, Φ(t) ≥ 0, Φ(t) 6≡ 0 and Φ(t) is convex. We denote by Φ(t) the
Young conjugate function of Φ(t), i.e.,

Φ(t) = sup
s≥0

{
ts− Φ(s)

}

and by LΦ(lRn), the space of measurable functions f(x) on lRn such that

∣∣∣
∫

lRn

f(x)g(x)dx
∣∣∣ < ∞

for all g(x) with ρ(g, Φ) < ∞, where

ρ(g, Φ) =
∫

lRn

Φ(|g(x)|)dx.

Then LΦ(lRn) is a Banach space with respect to the Orlicz norm

‖f‖Φ = sup
{∣∣∣

∫

lRn

f(x)g(x)dx
∣∣∣ : ρ(g, Φ) ≤ 1

}
.
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A Young function Φ is said to satisfy the ∆2-condition if

Φ(2x) ≤ KΦ(x), x ≥ 0 for some absolute constant K > 0 [see 5].

We first recall some results on Orlicz spaces [5,4,1]. We have:

1. ‖f‖Φ = sup
{∫

lRn

|f(x)g(x)
∣∣∣dx : ρ(g, Φ) ≤ 1

}
.

2. LΦ(lRn) ⊂ S′, where S′ is the dual of the space S of rapidly decreas-
ing test functions.

3. If f ∈ LΦ(lRn) then ‖f(. + t)‖Φ = ‖f‖Φ for each t ∈ lRn.

4. Let f ∈ LΦ(lRn), h ∈ L1(lRn) and g ∈ LΦ(lRn). Then ‖f ∗ h‖Φ ≤
‖f‖Φ‖h‖1 and ∫

lRn

|f(x)g(x)|dx ≤ ‖f‖Φ‖g‖Φ .

Lemma 1. Let Φ be a Young function satisfying ∆2-condition. Then for
each f ∈ LΦ(lRn), one has

(1) lim
t→0

‖f(. + t)− f‖Φ = 0, t ∈ lRn.

Proof. We first prove that f ∈ L1
`oc(lR

n). For any m = 1, 2, 3 . . . , put
Km = [−m,m]n. It follows from the convexity of Φ that

Φ
( 1

mesKm

∫

Km

|f(x)|dx
)
≤ 1

mesKm

∫

Km

Φ(|f(x)|)dx.

Since f ∈ LΦ(lRn), we have
∫
lRn Φ(|f(x)|)dx < ∞. From the above in-

equality and the hypothesis of Φ, it follows that
∫

Km
|f(x)|dx < ∞. Hence

f ∈ L1
`oc(lR

n).
To prove the lemma, it suffices to show that for any sequence {tk} ⊂

lRn, if tk → 0, as k →∞, then

lim
k→∞

‖f(. + tk)− f‖Φ = 0.

Assume to the contrary that there exists {tk} ⊂ lRn, tk → 0 such that

(2) ‖f(. + tk)− f‖Φ ≥ ε for some ε > 0.
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As shown above, f ∈ L1
`oc(lR

n). For each Km, we obtain
∫

Km

|f(x + tk)− f(x)|dx → 0, as k →∞.

Therefore, by [2, p.93, Theorem D], there exists a subsequence {tkj
} ⊂

{tk} such that f(. + tkj
) → f almost everywhere on Km. Therefore,

there exists a subsequence such that {f(. + tkjh
)} → f a.e. on lRn. For

simplicity, we still denote it by {f(. + tkj )} .
Since Φ is a convex function and satisfies ∆2-condition, we have

Φ(|f(x + tkj )− f(x)|) ≤ Φ(|f(x + tkj )|+ |f(x)|)
≤ 1

2
[Φ(2|f(x + tkj )|) + Φ(2|f(x)|)]

≤ K

2
[Φ(|f(x + tkj )|) + Φ(|f(x)|)].

Hence

0 ≤ K

2
[
Φ(f(x + tkj )) + Φ(f(x))

]− Φ(|f(x + tkj )− f(x)|), ∀x ∈ lRn.

Applying Fatou’s lemma to the subsequence {Φ(f(.+ tkj ))} and using the
equality

lim
j→∞

∫

lRn

Φ(f(x + tkj ))dx =
∫

lRn

Φ(f(x))dx,

we obtain

K

∫

lRn

Φ(f(x))dx

≤ lim
j→∞

inf
∫

lRn

[K

2
[Φ(f(x + tkj )) + Φ(f(x))]− Φ(f(x + tkj )− f(x))

]
dx

= lim
j→∞

K

2

∫

lRn

[Φ(f(x + tkj )) + Φ(f(x))]dx

− lim
j→∞

sup
∫

lRn

Φ(f(x + tkj )− f(x))dx

= K

∫

lRn

Φ(f(x))dx− lim
j→∞

sup
∫

lRn

Φ(f(x + tkj )− f(x))dx.

(3)
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By inequality (3),

∫

lRn

Φ(f(x + tkj
)− f(x))dx → 0, as j →∞.

By [5, Theorem 12], ‖f(. + tkj
)− f‖Φ → 0, which contradicts (2).

The subsequent two lemmas can be proved in a manner similar to
that of Lemmas 2.1 and 2.2 of [7]. We include their proofs for the sake of
completeness. They will be helpful for the understanding of the arguments
that will be used in the sequel.

Denote by lR∗ the abelian group of all nonzero real numbers with the
operation of ordinary multiplication and

dist(ϕ, S)Φ = min{‖ϕ− f‖Φ, f ∈ S}.

Lemma 2. Let Φ be a Young function satisfying ∆2-condition and ϕ ∈
LΦ(lRn). Assume that

1
h

is an integer larger than 1. If ϕ ∈ spanUh, where

Uh =
∞⋃

j=1

σj
hS0(ϕ), then spanUh is translation invariant.

Proof. By the definition of dilatation, for each h > 0, we have

σj
hf(x) = f(h−jx) for all j ≥ 1.

Let f be an arbitrary in σj
hS0(ϕ), i.e. f = σj

hg with g ∈ S0(ϕ). For any
α ∈ ZZn, we get

f(x + α) = σj
hg(x + α) = g(h−j(x + α))

= g(h−jx + h−jα) =
∑

β∈ZZn

ϕ(h−jx− β)a(β).

Since g ∈ S0(ϕ), we have g(. + α) ∈ S0(ϕ). Hence f(. + α) ∈ σj
hS0(ϕ).

This proves that σj
hS0(ϕ) is shift invariant. Therefore Uh is shift invariant

and so is spanUh.
For each β ∈ ZZn, by Result 3, we have

‖ϕ(.− β)− f(.− β)‖Φ = ‖ϕ− f‖Φ, for all f ∈ spanUh.
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Since spanUh is shift invariant, we have

dist(ϕ(.− β), spanUh)Φ = dist(ϕ, spanUh)Φ.

By virtue of ϕ ∈ spanUh it follows that ϕ(. − β) ∈ spanUh for every β ∈
ZZn. This implies that S0(ϕ) ⊂ spanUh. Note that Uh

⋃
S0(ϕ) = σ−1

h Uh.
Then

(4) spanUh = spanσ−1
h Uh.

On the other hand, we have

(5) σk
hspanUh = spanσk

hUh = σk+1
h spanσ−1

h Uh.

Combining (4) and (5), we conclude that

spanσk
hUh = spanσk+1

h Uh, for any k ≥ 1.

Therefore

(6) spanUh =
∞⋂

j=1

spanσj
hUh.

For each α ∈ ZZn, σk
hS0(ϕ) is hkα-translation invariant and so is spanσk

hUh.
From (6) it follows that spanUh is hkα-translation invariant.

Since
∞⋃

j=k

hjZZn is dense in lRn, for each k ≥ 1, we have, by using

Lemma 1,

lim
t→0

‖g(. + t)− g‖Φ = 0, for all g ∈ spanUh.

Hence spanUh is translation invariant.

Lemma 3. Let Φ be a Young function satisfying ∆2-condition. Assume
that ϕ ∈ LΦ(lRn) and G is a subgroup of lR∗. If

lim
h∈G h→0

dist(ϕ, σhS0(ϕ))Φ = 0,
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then
∞⋃

j=1

σj
hS0(ϕ) is a translation invariant subspace of LΦ(lRn), for any

sequence {hj} ⊂ G with lim
j→∞

hj = 0.

Proof. For any β ∈ ZZn, h 6= 0 then h−1β = α + ξ, with α ∈ ZZn,
ξ ∈ [0, 1)n. Fix a function a ∈ `0(ZZn). We have

(7) ‖ϕ(.− β)− σh(ϕ ∗′ a)‖Φ = ‖ϕ(.− hξ)− σh(ϕ ∗′ b)‖Φ,

with a(β) = b(β − α). From (1) and the hypothesis

lim
h→0

dist(ϕ, σhS0(ϕ))Φ = 0,

it follows that
lim
h→0

‖ϕ(.− hξ)− σh(ϕ ∗′ b)‖Φ = 0.

From (7) we conclude that ϕ(. − β) ∈
∞⋃

j=1

σhj S0(ϕ), for all β ∈ ZZn.

Therefore

(8) S0(ϕ) ⊂
∞⋃

j=1

σhj S0(ϕ).

On the other hand, we have

dist(σh1f, σhj S0(ϕ))Φ ≤ dist(f, σhjh−1
1

S0(ϕ))Φ, f ∈ S0(ϕ).

Therefore

σh1S0(ϕ) ⊂
∞⋃

j=2

σhj S0(ϕ).

From the hypothesis that G is a subgroup and (8), we get

S0(ϕ) ⊂
∞⋃

j=m

σhj/hk
S0(ϕ)

for every m ≥ k ≥ 1. By an argument similar to the previous one, we
obtain

(9) σhk
S0(ϕ) ⊂

∞⋃

j=m

σhj S0(ϕ)
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for every m ≥ k ≥ 1. Hence

(10)
∞⋃

j=1

σhj
S0(ϕ) =

∞⋂

k=1

∞⋃

j=k

σhj
S0(ϕ).

For each α ∈ ZZn, σhk
S0(ϕ) is hkα-translation invariant and so is

∞⋃
j=m

σhj S0(ϕ) for every m ≥ k ≥ 1. From (10) it follows that
∞⋃

j=1

σhj S0(ϕ)

is hkα-translation invariant. For any sequence {hj} ⊂ G, hj → 0 and
t ∈ lRn there exists a point α ∈ ZZn such that ‖t − αhj‖ (the ordinary
norm on lRn) is sufficiently small, for some j ≥ 1 .

Let f ∈
∞⋃

j=1

σhj S0(ϕ) and ε > 0. Then there exists a function g ∈
∞⋃

j=1

σhj S0(ϕ) such that

(11) ‖f(. + t)− g(. + t)‖Φ < ε.

Clearly g ∈ σhk
S0(ϕ), for some k ≥ 1. From (9) we conclude that g ∈

∞⋃
j=m

σhj S0(ϕ) for every integer m larger than 1. From (1) we have

(12) ‖g(. + t)− g(. + hjα)‖Φ < ε.

A combination of (11) and (12) yields f(. + t) ∈
∞⋃

j=1

σhj S0(ϕ). Thus

∞⋃
j=1

σhj S0(ϕ) is translation invariant.

Let f, g ∈ S0(ϕ), r, t ≥ 1. We have

dist(σhrf + σhtg, σhS0(ϕ))Φ
≤ dist(f, σhh−1

r
S0(ϕ))Φ + dist(g, σhh−1

t
S0(ϕ))Φ.

This implies that if f, g ∈
∞⋃

j=1

σhj S0(ϕ) and λ, γ ∈ lR, then λf + γg ∈
∞⋃

j=1

σhj S0(ϕ). Hence
∞⋃

j=1

σhj S0(ϕ) is a translation invariant subspace.
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The spectrum of a function g, denoted by sp(g), is defined to be the
support of ĝ, the Fourier transform of g [1].

Lemma 4. [1] Let Φ(t) > 0 for t > 0, f ∈ LΦ(lRn), f(x) 6≡ 0 and ξ0 ∈
sp(f) be an arbitrary point. Then the restriction of f̂ on any neighbourhood
of ξ0 cannot concentrate on any finite number of hyperplanes.

The following lemma, which will be used in the sequel, is the analog
for Orlicz spaces of [6, Theorem 9.3], and has a similar proof.

Lemma 5. Let (Φ, Φ) be a complementary pair of Young functions. As-
sume that f ∈ L1(lRn) ∩ LΦ(lRn) and g ∈ LΦ(lRn). If f ∗ g = 0 then

sp(g) ⊂ Z(f) := {t ∈ lRn : f̂(t) = 0 }.
Proof. For each t in the complement of Z(f), we have f̂(t) 6= 0. Without
loss of generality, we may assume that f̂(t) = 1. By Lemma 9.2 [6] there
exists h ∈ L1(lRn) with ‖h‖1 < 1 such that ĥ(s) = 1 − f̂(s) for all s in
some neighbourhood V of t.

To prove the lemma, it suffices to show that ĝ = 0 in V , i.e., for every
ψ ∈ S such that ψ̂ (the Fourier transform of ψ) has its support in V ,
one proves that ĝ(ψ̂) = 0. By the definition of the Fourier transform of a
distribution g ∈ S′ [3,6], we have

ĝ(ψ̂) = g(ψ̌) = (g ∗ ψ)(0),

where ψ̌(x) = ψ(−x).
We shall prove that (g ∗ ψ)(x) = 0 for all x ∈ lRn. Fix a function ψ in

S. Put g0 = ψ, gj = h ∗ gj−1, for j ≥ 1 and G =
∞∑

j=0

gj . It is clear that

G ∈ L1(lRn). In fact, by Young’s inequality for convolution products, we
get

‖gj‖1 ≤ ‖h‖1‖gj−1‖1 ≤ ‖h‖j
1‖ψ‖1.

This implies that

‖G‖1 ≤
∞∑

j=1

‖h‖j
1‖ψ‖1 < ∞.

Since ĥ(s) = 1− f̂(s) on the support of ψ̂, we have

[1− ĥ(s)]ψ̂(s) = f̂(s)ψ̂(s) = f̂(s)ĝ0(s)

[ĥ(s)− ĥ2(s)]ψ̂(s) = f̂(s)ψ̂(s)ĥ(s) = f̂(s)ĝ1(s)
. . . . . .
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Therefore, ψ̂(s) = f̂(s)Ĝ(s) for all s ∈ V . It is clear that

(13) ψ̂ = f̂ Ĝ = f̂ ∗G.

From (13) we get ψ = G ∗ f . Since f,G ∈ L1(lRn) and g ∈ LΦ(lRn), one
can see that

‖ψ ∗ g‖Φ = ‖(G ∗ f) ∗ g‖Φ ≤ ‖G ∗ f‖1‖g‖Φ ≤ ‖G‖1‖f‖1‖g‖Φ < ∞.

Since the convolution product is associative, we get

ψ ∗ g = (G ∗ f) ∗ g = G ∗ (f ∗ g) = 0.

Hence ĝ(ψ̂) = 0. It is clear that ĝ = 0 in the neighbourhood V . This
implies that t in the complement of the spectrum of g. Therefore sp(g) ⊂
Z(f).

Theorem 1. Let (Φ,Φ) be a complementary pair of Young functions, Φ
satisfy ∆2-condition and Φ(t) > 0 for t > 0. Assume that Y is a trans-
lation invariant subspace of L1(lRn) ∩ LΦ(lRn). If for each ξ ∈ Z(Y ) :=⋂
f∈Y

{t ∈ lRn : f̂(t) = 0} there is a neighbourhood V of ξ such that V ∩Z(Y )

is contained in a finite number of hyperplanes, then Y is dense in LΦ(lRn).

Proof. Assume to the contrary that Y is not dense in LΦ(lRn). Then, by
the Hahn-Banach theorem, there exists a nonzero functional g ∈ LΦ(lRn)
such that ∫

lRn

f(x)g(x)dx = 0, for all f ∈ Y ,

by [5, Corollary 6] (LΦ(lRn))∗ = LΦ(lRn). Since Y is a translation invari-
ant subspace, we have

∫

lRn

f(y − x)g(x)dx = 0, for all f ∈ Y.

In other words, f ∗ g = 0 for all f ∈ Y . By Lemma 5, we obtain

sp(g) ⊂ {t ∈ lRn : f̂(t) = 0}, for all f ∈ Y.
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Hence, sp(g) ⊂ Z(Y ).
By hypothesis, it follows that for each ξ ∈ sp(g) there is a neighbour-

hood V of ξ such that V ∩ sp(g) is contained in a finite number of hyper-
planes. Applying Lemma 4, we have g = 0. This is impossible.

Corollary 1. Let (Φ, Φ) be a complementary pair of Young functions,
Φ satisfy ∆2-condition and Φ(t) > 0 for t > 0. Assume that Y is a
translation invariant subspace of L1(lRn)∩LΦ(lRn). If Z(Y ) is contained
in a finite number of hyperplanes, then Y is dense in LΦ(lRn).

Remark 1. In the previous theorem, the assumption Φ(t) > 0 for t > 0
can be dropped when we replace the hypothesis that for each ξ ∈ Z(Y )
there is a neighbourhood V of ξ such that V ∩Z(Y ) is contained in a finite
number of hyperplanes by the hypothesis that Z(Y ) = ∅.

Theorem 2. Let (Φ, Φ) be a complementary pair of Young functions
and let Φ satisfy ∆2-condition. Assume that ϕ ∈ L1(lRn) ∩ LΦ(lRn) with

ϕ̂(0) 6= 0 and
1
h

is an integer larger than 1. If ϕ ∈ spanUh, where Uh =
∞⋃

j=1

σj
hS0(ϕ), then spanUh = LΦ(lRn).

Proof. For any g ∈ LΦ(lRn) satisfying

∫

lRn

f(x)g(x)dx = 0,

for all f ∈ spanUh, we will prove that g = 0. By virtue of Lemma 2, we
get ∫

lRn

σj
hϕ(y − x)g(x)dx = 0, ∀j ≥ 1, for all y ∈ lRn.

Since g ∈ LΦ(lRn) and σj
hϕ ∈ L1(lRn), we have

(g ∗ σj
hϕ)(y) = g(σj

hϕ(y − .)) = 0,

for all y ∈ lRn. Note that the Fourier transform of σj
hϕ(x) is hjnϕ̂(hjt).

It follows from Lemma 5 that

(14) sp(g) ⊂
∞⋂

j=1

{t ∈ lRn : ϕ̂(hjt) = 0} = Z(ϕ).
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Since ϕ ∈ L1(lRn) and ϕ̂(0) 6= 0, we have ϕ̂(hjt) 6= 0 for each t ∈
lRn and j sufficiently large. This shows that Z(ϕ) = ∅. From (14) we
conclude that ĝ = 0. Hence g = 0. By the Hahn-Banach theorem, we have
spanUh = LΦ(lRn).

Theorem 3. Let (Φ,Φ) be a complementary pair of Young functions,

Φ satisfy ∆2-condition and Φ(t) > 0 for t > 0. Assume that
1
h

is an

integer > 1. Suppose ϕ ∈ L1(lRn) ∩ LΦ(lRn) and ϕ ∈ spanUh, where

Uh =
∞⋃

j=1

σj
hS0(ϕ). If for each ξ ∈ Z(ϕ) there is a neighbourhood V of ξ

such that V ∩ Z(ϕ) is contained in a finite number of hyperplanes, then
spanUh is dense in LΦ(lRn).

Proof. Assume to the contrary that then there exists a nonzero functional
g ∈ (LΦ(lRn))∗ such that

∫

lRn

f(x)g(x)dx = 0, for all f ∈ spanUh.

Then g ∈ LΦ(lRn) = (LΦ(lRn))∗ by a result of [5]. By virtue of Lemma 2,
spanUh is translation invariant, and hence,

(15)
∫

lRn

σj
hϕ(y − x)g(x)dx = 0, ∀j ≥ 1, ∀y ∈ lRn.

Since ϕ ∈ L1(lRn) and g ∈ LΦ(lRn), from (15) we get (g ∗ σj
hϕ)(y) =

0 for all y ∈ lRn. The Fourier transform of (g ∗ σj
hϕ)(x) is hnjϕ̂(hjt)ĝ(t).

Therefore

(16) ̂(σj
hϕ ∗ g) = hnjϕ̂(hj .)ĝ = 0, ∀j ≥ 1.

Lemma 5 and (16) imply that

sp(g) ⊂
∞⋂

j=1

{t ∈ lRn : ϕ̂(hjt) = 0} = Z(ϕ).

By the hypothesis and Lemma 4, we get g = 0. This leads to a contradic-
tion. Therefore spanUh = LΦ(lRn).
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Corollary 2. Let (Φ, Φ) be a complementary pair of Young functions,

Φ satisfy ∆2-condition and Φ(t) > 0 for t > 0. Assume that
1
h

is an

integer > 1. Suppose ϕ ∈ L1(lRn) ∩ LΦ(lRn) and ϕ ∈ spanUh, where

Uh =
∞⋃

j=1

σj
hS0(ϕ). If Z(ϕ) is contained in a finite number of hyperplanes,

then spanUh is dense in LΦ(lRn).

Remark 2. The conclusions of Theorem 2, Theorem 3 and Corollary 2
remain valid if the condition ϕ ∈ spanUh is replaced by the condition

lim
h→0,h∈G

dist(ϕ, σhS0(ϕ))Φ = 0.

Using the same argument as in the proof of [7, Proposition 6.1], we
obtain the following two corollaries:

Corollary 3. Let (Φ, Φ) be a complementary pair of Young functions and
Φ satisfy ∆2-condition. Assume that ϕ ∈ L1(lRn)∩LΦ(lRn) with ϕ̂(0) 6= 0
and 1

h is an integer larger than 1. If ϕ ∈ σhS0(ϕ), then

lim
j→∞

dist(f, σj
hS0(ϕ))Φ = 0, ∀f ∈ LΦ(lRn).

Corollary 4. Let (Φ,Φ) be a complementary pair of Young functions, Φ
satisfy ∆2-condition and Φ(t) > 0, for t > 0. Assume that ϕ ∈ L1(lRn) ∩
LΦ(lRn) and 1

h is an integer larger than 1. If Z(ϕ) is contained in a finite
number of hyperplanes and ϕ ∈ σhS0(ϕ), then

lim
j→∞

dist(f, σj
hS0(ϕ))Φ = 0, ∀f ∈ LΦ(lRn).
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