SOME COLLECTIONS OF FUNCTIONS DENSE IN AN ORLICZ SPACE

TRUONG VAN THUONG

ABSTRACT. This paper presents sufficient conditions for a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ to be dense in the Orlicz space $L_{\Phi}(\mathbb{R}^n)$.

INTRODUCTION

Let φ be a function defined on \mathbb{R}^n and a be a function defined on \mathbb{Z}^n . Their semi-discrete convolution [7] is defined by, for any $x \in \mathbb{R}^n$,

$$\varphi *' a(x) = \sum_{\alpha \in \mathbb{Z}^n} \varphi(x - \alpha) a(\alpha),$$

for which the series converges absolutely. Denote by $\ell_0(\mathbb{Z}^n)$ the space of all finitely supported functions on \mathbb{Z}^n and $S_0(\varphi)$ the image of $\ell_0(\mathbb{Z}^n)$ under $\varphi *'$. If $\varphi \in C(\mathbb{R}^n)$ then $\varphi *' a \in C(\mathbb{R}^n)$.

A collection F of functions on \mathbb{R}^n is called shift invariant [7] if for each $f \in F$, $\alpha \in \mathbb{Z}^n$, $f(.+\alpha) \in F$. Then $S_0(\varphi)$ is a linear span of the integer translates of φ and is shift invariant. A set F is called translation invariant if

$$\tau_t: f \longrightarrow f(.+t)$$

maps F into F for each $t \in \mathbb{R}^n$ and F is dilation invariant if

$$\sigma_h: f \longrightarrow f(h^{-1}.)$$

maps F into itself for each h > 0. Denote

Received January 26, 1999; in revised form March 26, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 46F99, 46E30.

Key words and phrases. Translation invariant, Fourier transform, theory of Orlicz spaces.

Supported by the National Basic Research Program in Natural Science.

$$U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi).$$

The problem of finding sufficient conditions on a collection of functions generated by translations of a single function to be dense in $L_p(\mathbb{R}^n)$ or $C_0(\mathbb{R}^n)$ was studied by Kang Zhao in [7]. He showed that for a subspace which is generated by U_h , where φ satisfies some certain conditions, the span U_h is dense in $L_p(\mathbb{R}^n)$ or $C_0(\mathbb{R}^n)$. This leads to the natural question under what conditions on the collection U_h and function φ , the linear span of U_h is dense in the Orlicz space $L_{\Phi}(\mathbb{R}^n)$?

In this paper, modifying the method of [7] we give some sufficient conditions for a collection of functions generated by translations of a single function in $L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$, to be dense in $L_{\Phi}(\mathbb{R}^n)$. We have to overcome some difficulties because $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L_p(\mathbb{R}^n)$ but $C_0^{\infty}(\mathbb{R}^n)$ is not generally dense in $L_{\Phi}(\mathbb{R}^n)$. Moreover, the results of this paper are generalizations of the ones given by Kang Zhao in [7].

Results

Let $\Phi(t) : [0, +\infty) \longrightarrow [0, +\infty]$ be an arbitrary Young function, i.e., $\Phi(0) = 0, \ \Phi(t) \ge 0, \ \Phi(t) \ne 0 \text{ and } \Phi(t) \text{ is convex.}$ We denote by $\overline{\Phi}(t)$ the Young conjugate function of $\Phi(t)$, i.e.,

$$\overline{\Phi}(t) = \sup_{s \ge 0} \left\{ ts - \Phi(s) \right\}$$

and by $L_{\Phi}(\mathbb{R}^n)$, the space of measurable functions f(x) on \mathbb{R}^n such that

$$\left|\int\limits_{\mathbb{R}^n} f(x)g(x)dx\right| < \infty$$

for all g(x) with $\rho(g,\overline{\Phi}) < \infty$, where

$$\rho(g,\overline{\Phi}) = \int_{\mathbb{R}^n} \overline{\Phi}(|g(x)|) dx.$$

Then $L_{\Phi}(\mathbb{R}^n)$ is a Banach space with respect to the Orlicz norm

$$||f||_{\Phi} = \sup \left\{ \left| \int_{\mathbb{R}^n} f(x)g(x)dx \right| : \ \rho(g,\overline{\Phi}) \le 1 \right\}.$$

A Young function Φ is said to satisfy the Δ_2 -condition if

 $\Phi(2x) \leq K\Phi(x), \quad x \geq 0 \quad \text{for some absolute constant } K > 0 \text{ [see 5]}.$

We first recall some results on Orlicz spaces [5,4,1]. We have:

1.
$$||f||_{\Phi} = \sup\left\{ \int_{\mathbb{R}^n} |f(x)g(x)| dx : \rho(g,\overline{\Phi}) \le 1 \right\}.$$

2. $L_{\Phi}(\mathbb{R}^n) \subset S'$, where S' is the dual of the space S of rapidly decreasing test functions.

3. If $f \in L_{\Phi}(\mathbb{R}^n)$ then $||f(.+t)||_{\Phi} = ||f||_{\Phi}$ for each $t \in \mathbb{R}^n$.

4. Let $f \in L_{\Phi}(\mathbb{R}^n)$, $h \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$. Then $||f * h||_{\Phi} \leq ||f||_{\Phi} ||h||_1$ and

$$\int_{\mathbb{R}^n} |f(x)g(x)| dx \le \|f\|_{\Phi} \|g\|_{\overline{\Phi}} \,.$$

Lemma 1. Let Φ be a Young function satisfying Δ_2 -condition. Then for each $f \in L_{\Phi}(\mathbb{R}^n)$, one has

(1)
$$\lim_{t \to 0} \|f(.+t) - f\|_{\Phi} = 0, \qquad t \in \mathbb{R}^n.$$

Proof. We first prove that $f \in L^1_{loc}(\mathbb{R}^n)$. For any m = 1, 2, 3..., put $K_m = [-m, m]^n$. It follows from the convexity of Φ that

$$\Phi\left(\frac{1}{\operatorname{mes}K_m}\int\limits_{K_m}|f(x)|dx\right) \le \frac{1}{\operatorname{mes}K_m}\int\limits_{K_m}\Phi(|f(x)|)dx$$

Since $f \in L_{\Phi}(\mathbb{R}^n)$, we have $\int_{\mathbb{R}^n} \Phi(|f(x)|) dx < \infty$. From the above inequality and the hypothesis of Φ , it follows that $\int_{K_m} |f(x)| dx < \infty$. Hence $f \in L^1_{loc}(\mathbb{R}^n)$.

To prove the lemma, it suffices to show that for any sequence $\{t_k\} \subset \mathbb{R}^n$, if $t_k \to 0$, as $k \to \infty$, then

$$\lim_{k \to \infty} \|f(.+t_k) - f\|_{\Phi} = 0.$$

Assume to the contrary that there exists $\{t_k\} \subset \mathbb{R}^n, t_k \to 0$ such that

(2)
$$||f(.+t_k) - f||_{\Phi} \ge \varepsilon$$
 for some $\varepsilon > 0$.

As shown above, $f \in L^1_{\ell oc}(\mathbb{R}^n)$. For each K_m , we obtain

$$\int_{K_m} |f(x+t_k) - f(x)| dx \to 0, \quad \text{as } k \to \infty.$$

Therefore, by [2, p.93, Theorem D], there exists a subsequence $\{t_{k_j}\} \subset \{t_k\}$ such that $f(. + t_{k_j}) \to f$ almost everywhere on K_m . Therefore, there exists a subsequence such that $\{f(. + t_{k_{j_h}})\} \to f$ a.e. on \mathbb{R}^n . For simplicity, we still denote it by $\{f(. + t_{k_j})\}$.

Since Φ is a convex function and satisfies Δ_2 -condition, we have

$$\begin{aligned} \Phi(|f(x+t_{k_j}) - f(x)|) &\leq \Phi(|f(x+t_{k_j})| + |f(x)|) \\ &\leq \frac{1}{2} [\Phi(2|f(x+t_{k_j})|) + \Phi(2|f(x)|)] \\ &\leq \frac{K}{2} [\Phi(|f(x+t_{k_j})|) + \Phi(|f(x)|)]. \end{aligned}$$

Hence

$$0 \le \frac{K}{2} \left[\Phi(f(x+t_{k_j})) + \Phi(f(x)) \right] - \Phi(|f(x+t_{k_j}) - f(x)|), \quad \forall x \in \mathbb{R}^n.$$

Applying Fatou's lemma to the subsequence $\{\Phi(f(.+t_{k_j}))\}$ and using the equality

$$\lim_{j \to \infty} \int_{\mathbb{R}^n} \Phi(f(x+t_{k_j})) dx = \int_{\mathbb{R}^n} \Phi(f(x)) dx,$$

we obtain

$$\begin{split} &K \int_{\mathbb{R}^{n}} \Phi(f(x)) dx \\ &\leq \lim_{j \to \infty} \inf \int_{\mathbb{R}^{n}} \left[\frac{K}{2} [\Phi(f(x+t_{k_{j}})) + \Phi(f(x))] - \Phi(f(x+t_{k_{j}}) - f(x)) \right] dx \\ &= \lim_{j \to \infty} \frac{K}{2} \int_{\mathbb{R}^{n}} \left[\Phi(f(x+t_{k_{j}})) + \Phi(f(x)) \right] dx \\ &\quad - \lim_{j \to \infty} \sup \int_{\mathbb{R}^{n}} \Phi(f(x+t_{k_{j}}) - f(x)) dx \end{split}$$

$$(3)$$

$$&= K \int_{\mathbb{R}^{n}} \Phi(f(x)) dx - \lim_{j \to \infty} \sup \int_{\mathbb{R}^{n}} \Phi(f(x+t_{k_{j}}) - f(x)) dx. \end{split}$$

By inequality (3),

$$\int_{\mathbb{R}^n} \Phi(f(x+t_{k_j}) - f(x)) dx \to 0, \text{ as } j \to \infty.$$

By [5, Theorem 12], $||f(.+t_{k_j}) - f||_{\Phi} \to 0$, which contradicts (2).

The subsequent two lemmas can be proved in a manner similar to that of Lemmas 2.1 and 2.2 of [7]. We include their proofs for the sake of completeness. They will be helpful for the understanding of the arguments that will be used in the sequel.

Denote by \mathbb{R}^* the abelian group of all nonzero real numbers with the operation of ordinary multiplication and

$$\operatorname{dist}(\varphi, S)_{\Phi} = \min\{\|\varphi - f\|_{\Phi}, \ f \in S\}.$$

Lemma 2. Let Φ be a Young function satisfying Δ_2 -condition and $\varphi \in L_{\Phi}(\mathbb{R}^n)$. Assume that $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\operatorname{span}U_h}$, where $U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)$, then $\overline{\operatorname{span}U_h}$ is translation invariant.

Proof. By the definition of dilatation, for each h > 0, we have

$$\sigma_h^j f(x) = f(h^{-j}x) \quad \text{for all} \quad j \ge 1$$

Let f be an arbitrary in $\sigma_h^j S_0(\varphi)$, i.e. $f = \sigma_h^j g$ with $g \in S_0(\varphi)$. For any $\alpha \in \mathbb{Z}^n$, we get

$$f(x+\alpha) = \sigma_h^j g(x+\alpha) = g(h^{-j}(x+\alpha))$$
$$= g(h^{-j}x + h^{-j}\alpha) = \sum_{\beta \in \mathbb{Z}^n} \varphi(h^{-j}x - \beta)a(\beta).$$

Since $g \in S_0(\varphi)$, we have $g(. + \alpha) \in S_0(\varphi)$. Hence $f(. + \alpha) \in \sigma_h^j S_0(\varphi)$. This proves that $\sigma_h^j S_0(\varphi)$ is shift invariant. Therefore U_h is shift invariant and so is span U_h .

For each $\beta \in \mathbb{Z}^n$, by Result 3, we have

$$\|\varphi(.-\beta) - f(.-\beta)\|_{\Phi} = \|\varphi - f\|_{\Phi}, \quad \text{for all } f \in \operatorname{span} U_h.$$

Since $\operatorname{span}U_h$ is shift invariant, we have

$$\operatorname{dist}(\varphi(.-\beta), \operatorname{span}U_h)_{\Phi} = \operatorname{dist}(\varphi, \operatorname{span}U_h)_{\Phi}.$$

By virtue of $\varphi \in \overline{\operatorname{span}U_h}$ it follows that $\varphi(.-\beta) \in \overline{\operatorname{span}U_h}$ for every $\beta \in \mathbb{Z}^n$. This implies that $S_0(\varphi) \subset \overline{\operatorname{span}U_h}$. Note that $U_h \bigcup S_0(\varphi) = \sigma_h^{-1}U_h$. Then

(4)
$$\overline{\operatorname{span}U_h} = \overline{\operatorname{span}\sigma_h^{-1}U_h}.$$

On the other hand, we have

(5)
$$\sigma_h^k \operatorname{span} U_h = \operatorname{span} \sigma_h^k U_h = \sigma_h^{k+1} \operatorname{span} \sigma_h^{-1} U_h.$$

Combining (4) and (5), we conclude that

$$\overline{\operatorname{span}\sigma_h^k U_h} = \overline{\operatorname{span}\sigma_h^{k+1} U_h}, \quad \text{for any } k \ge 1.$$

Therefore

(6)
$$\overline{\operatorname{span}U_h} = \bigcap_{j=1}^{\infty} \overline{\operatorname{span}\sigma_h^j U_h}.$$

For each $\alpha \in \mathbb{Z}^n$, $\sigma_h^k S_0(\varphi)$ is $h^k \alpha$ -translation invariant and so is $\overline{\operatorname{span}}\sigma_h^k U_h$. From (6) it follows that $\overline{\operatorname{span}}U_h$ is $h^k \alpha$ -translation invariant.

Since $\bigcup_{j=k}^{\infty} h^j \mathbb{Z}^n$ is dense in \mathbb{R}^n , for each $k \ge 1$, we have, by using Lemma 1,

$$\lim_{t \to 0} \|g(.+t) - g\|_{\Phi} = 0, \quad \text{for all } g \in \text{span}U_h.$$

Hence $\overline{\text{span}U_h}$ is translation invariant. \Box

Lemma 3. Let Φ be a Young function satisfying Δ_2 -condition. Assume that $\varphi \in L_{\Phi}(\mathbb{R}^n)$ and G is a subgroup of \mathbb{R}^* . If

$$\lim_{h \in G} \operatorname{dist}(\varphi, \sigma_h S_0(\varphi))_{\Phi} = 0,$$

201

then $\bigcup_{j=1}^{\infty} \overline{\sigma_h^j S_0(\varphi)}$ is a translation invariant subspace of $L_{\Phi}(\mathbb{R}^n)$, for any sequence $\{h_j\} \subset G$ with $\lim_{j \to \infty} h_j = 0$.

Proof. For any $\beta \in \mathbb{Z}^n$, $h \neq 0$ then $h^{-1}\beta = \alpha + \xi$, with $\alpha \in \mathbb{Z}^n$, $\xi \in [0,1)^n$. Fix a function $a \in \ell_0(\mathbb{Z}^n)$. We have

(7)
$$\|\varphi(.-\beta) - \sigma_h(\varphi *'a)\|_{\Phi} = \|\varphi(.-h\xi) - \sigma_h(\varphi *'b)\|_{\Phi},$$

with $a(\beta) = b(\beta - \alpha)$. From (1) and the hypothesis

$$\lim_{h \to 0} \operatorname{dist}(\varphi, \sigma_h S_0(\varphi))_{\Phi} = 0,$$

it follows that

$$\lim_{h \to 0} \|\varphi(.-h\xi) - \sigma_h(\varphi *' b)\|_{\Phi} = 0.$$

From (7) we conclude that $\varphi(.-\beta) \in \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$, for all $\beta \in \mathbb{Z}^n$. Therefore

(8)
$$S_0(\varphi) \subset \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}.$$

On the other hand, we have

$$\operatorname{dist}(\sigma_{h_1}f, \sigma_{h_j}S_0(\varphi))_{\Phi} \leq \operatorname{dist}(f, \sigma_{h_jh_1^{-1}}S_0(\varphi))_{\Phi}, \quad f \in S_0(\varphi).$$

Therefore

$$\sigma_{h_1}S_0(\varphi) \subset \bigcup_{j=2}^{\infty} \sigma_{h_j}S_0(\varphi).$$

From the hypothesis that G is a subgroup and (8), we get

$$S_0(\varphi) \subset \bigcup_{j=m}^{\infty} \sigma_{h_j/h_k} S_0(\varphi)$$

for every $m \ge k \ge 1$. By an argument similar to the previous one, we obtain

(9)
$$\sigma_{h_k} S_0(\varphi) \subset \bigcup_{j=m}^{\infty} \sigma_{h_j} S_0(\varphi)$$

for every $m \ge k \ge 1$. Hence

(10)
$$\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)} = \bigcap_{k=1}^{\infty} \overline{\bigcup_{j=k}^{\infty} \sigma_{h_j} S_0(\varphi)}.$$

For each $\alpha \in \mathbb{Z}^n$, $\sigma_{h_k} S_0(\varphi)$ is $h_k \alpha$ -translation invariant and so is $\bigcup_{j=m}^{\infty} \sigma_{h_j} S_0(\varphi)$ for every $m \ge k \ge 1$. From (10) it follows that $\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)$ is $h_k \alpha$ -translation invariant. For any sequence $\{h_j\} \subset G, h_j \to 0$ and $t \in \mathbb{R}^n$ there exists a point $\alpha \in \mathbb{Z}^n$ such that $||t - \alpha h_j||$ (the ordinary norm on \mathbb{R}^n) is sufficiently small, for some $j \ge 1$.

Let $f \in \bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)$ and $\varepsilon > 0$. Then there exists a function $g \in \bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)$ such that

(11)
$$||f(.+t) - g(.+t)||_{\Phi} < \varepsilon$$

Clearly $g \in \sigma_{h_k} S_0(\varphi)$, for some $k \ge 1$. From (9) we conclude that $g \in \bigcup_{j=m}^{\infty} \sigma_{h_j} S_0(\varphi)$ for every integer m larger than 1. From (1) we have

(12)
$$\|g(.+t) - g(.+h_j\alpha)\|_{\Phi} < \varepsilon.$$

A combination of (11) and (12) yields $f(.+t) \in \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$. Thus

 $\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$ is translation invariant. Let $f, g \in S_0(\varphi), r, t \ge 1$. We have

$$dist(\sigma_{h_r}f + \sigma_{h_t}g, \sigma_h S_0(\varphi))_{\Phi} \leq dist(f, \sigma_{hh_r^{-1}}S_0(\varphi))_{\Phi} + dist(g, \sigma_{hh_t^{-1}}S_0(\varphi))_{\Phi}.$$

This implies that if $f,g \in \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$ and $\lambda, \gamma \in \mathbb{R}$, then $\lambda f + \gamma g \in \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$. Hence $\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$ is a translation invariant subspace. \Box

The spectrum of a function g, denoted by $\operatorname{sp}(g)$, is defined to be the support of \widehat{g} , the Fourier transform of g [1].

Lemma 4. [1] Let $\Phi(t) > 0$ for t > 0, $f \in L_{\Phi}(\mathbb{R}^n)$, $f(x) \not\equiv 0$ and $\xi^0 \in$ sp(f) be an arbitrary point. Then the restriction of \hat{f} on any neighbourhood of ξ^0 cannot concentrate on any finite number of hyperplanes.

The following lemma, which will be used in the sequel, is the analog for Orlicz spaces of [6, Theorem 9.3], and has a similar proof.

Lemma 5. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions. Assume that $f \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$. If f * g = 0 then

$$\operatorname{sp}(g) \subset Z(f) := \{ t \in \mathbb{R}^n : f(t) = 0 \}.$$

Proof. For each t in the complement of Z(f), we have $\hat{f}(t) \neq 0$. Without loss of generality, we may assume that $\hat{f}(t) = 1$. By Lemma 9.2 [6] there exists $h \in L_1(\mathbb{R}^n)$ with $||h||_1 < 1$ such that $\hat{h}(s) = 1 - \hat{f}(s)$ for all s in some neighbourhood V of t.

To prove the lemma, it suffices to show that $\hat{g} = 0$ in V, i.e., for every $\psi \in S$ such that $\hat{\psi}$ (the Fourier transform of ψ) has its support in V, one proves that $\hat{g}(\hat{\psi}) = 0$. By the definition of the Fourier transform of a distribution $g \in S'$ [3,6], we have

$$\widehat{g}(\widehat{\psi}) = g(\check{\psi}) = (g * \psi)(0),$$

where $\check{\psi}(x) = \psi(-x)$.

We shall prove that $(g * \psi)(x) = 0$ for all $x \in \mathbb{R}^n$. Fix a function ψ in S. Put $g_0 = \psi$, $g_j = h * g_{j-1}$, for $j \ge 1$ and $G = \sum_{j=0}^{\infty} g_j$. It is clear that $G \in L_1(\mathbb{R}^n)$. In fact, by Young's inequality for convolution products, we get

$$||g_j||_1 \le ||h||_1 ||g_{j-1}||_1 \le ||h||_1^j ||\psi||_1$$

This implies that

$$||G||_1 \le \sum_{j=1}^{\infty} ||h||_1^j ||\psi||_1 < \infty.$$

Since $\hat{h}(s) = 1 - \hat{f}(s)$ on the support of $\hat{\psi}$, we have

$$[1 - \hat{h}(s)]\widehat{\psi}(s) = \widehat{f}(s)\widehat{\psi}(s) = \widehat{f}(s)\widehat{g}_{0}(s)$$
$$[\widehat{h}(s) - \widehat{h}^{2}(s)]\widehat{\psi}(s) = \widehat{f}(s)\widehat{\psi}(s)\widehat{h}(s) = \widehat{f}(s)\widehat{g}_{1}(s)$$
.....

Therefore, $\widehat{\psi}(s) = \widehat{f}(s)\widehat{G}(s)$ for all $s \in V$. It is clear that

(13)
$$\widehat{\psi} = \widehat{f}\widehat{G} = \widehat{f*G}.$$

From (13) we get $\psi = G * f$. Since $f, G \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$, one can see that

$$\|\psi\ast g\|_{\overline{\Phi}} = \|(G\ast f)\ast g\|_{\overline{\Phi}} \le \|G\ast f\|_1 \|g\|_{\overline{\Phi}} \le \|G\|_1 \|f\|_1 \|g\|_{\overline{\Phi}} < \infty.$$

Since the convolution product is associative, we get

$$\psi * g = (G * f) * g = G * (f * g) = 0.$$

Hence $\widehat{g}(\widehat{\psi}) = 0$. It is clear that $\widehat{g} = 0$ in the neighbourhood V. This implies that t in the complement of the spectrum of g. Therefore $\operatorname{sp}(g) \subset Z(f)$. \Box

Theorem 1. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for t > 0. Assume that Y is a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$. If for each $\xi \in Z(Y) :=$ $\bigcap_{f \in Y} \{t \in \mathbb{R}^n : \widehat{f}(t) = 0\}$ there is a neighbourhood V of ξ such that $V \cap Z(Y)$ is contained in a finite number of hyperplanes, then Y is dense in $L_{\Phi}(\mathbb{R}^n)$.

Proof. Assume to the contrary that Y is not dense in $L_{\Phi}(\mathbb{R}^n)$. Then, by the Hahn-Banach theorem, there exists a nonzero functional $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} f(x)g(x)dx = 0, \quad \text{for all } f \in \overline{Y},$$

by [5, Corollary 6] $(L_{\Phi}(\mathbb{R}^n))^* = L_{\overline{\Phi}}(\mathbb{R}^n)$. Since Y is a translation invariant subspace, we have

$$\int_{\mathbb{R}^n} f(y-x)g(x)dx = 0, \quad \text{for all } f \in Y.$$

In other words, f * g = 0 for all $f \in Y$. By Lemma 5, we obtain

$$\operatorname{sp}(g) \subset \{t \in \mathbb{R}^n : f(t) = 0\}, \text{ for all } f \in Y.$$

Hence, $\operatorname{sp}(g) \subset Z(Y)$.

By hypothesis, it follows that for each $\xi \in \operatorname{sp}(g)$ there is a neighbourhood V of ξ such that $V \cap \operatorname{sp}(g)$ is contained in a finite number of hyperplanes. Applying Lemma 4, we have g = 0. This is impossible. \Box

Corollary 1. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for t > 0. Assume that Y is a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$. If Z(Y) is contained in a finite number of hyperplanes, then Y is dense in $L_{\Phi}(\mathbb{R}^n)$.

Remark 1. In the previous theorem, the assumption $\overline{\Phi}(t) > 0$ for t > 0 can be dropped when we replace the hypothesis that for each $\xi \in Z(Y)$ there is a neighbourhood V of ξ such that $V \cap Z(Y)$ is contained in a finite number of hyperplanes by the hypothesis that $Z(Y) = \emptyset$.

Theorem 2. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions and let Φ satisfy Δ_2 -condition. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ with $\widehat{\varphi}(0) \neq 0$ and $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\operatorname{span}U_h}$, where $U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)$, then $\overline{\operatorname{span}U_h} = L_{\Phi}(\mathbb{R}^n)$.

Proof. For any $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ satisfying

$$\int_{\mathbb{R}^n} f(x)g(x)dx = 0,$$

for all $f \in \overline{\text{span}U_h}$, we will prove that g = 0. By virtue of Lemma 2, we get

$$\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \quad \forall j \ge 1, \quad \text{for all } y \in \mathbb{R}^n.$$

Since $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ and $\sigma_h^j \varphi \in L_1(\mathbb{R}^n)$, we have

$$(g * \sigma_h^j \varphi)(y) = g(\sigma_h^j \varphi(y - .)) = 0,$$

for all $y \in \mathbb{R}^n$. Note that the Fourier transform of $\sigma_h^j \varphi(x)$ is $h^{jn} \widehat{\varphi}(h^j t)$. It follows from Lemma 5 that

(14)
$$\operatorname{sp}(g) \subset \bigcap_{j=1}^{\infty} \{t \in \mathbb{R}^n : \widehat{\varphi}(h^j t) = 0\} = Z(\varphi).$$

Since $\varphi \in L_1(\mathbb{R}^n)$ and $\widehat{\varphi}(0) \neq 0$, we have $\widehat{\varphi}(h^j t) \neq 0$ for each $t \in \mathbb{R}^n$ and j sufficiently large. This shows that $Z(\varphi) = \emptyset$. From (14) we conclude that $\widehat{g} = 0$. Hence g = 0. By the Hahn-Banach theorem, we have $\overline{\operatorname{span} U_h} = L_{\Phi}(\mathbb{R}^n)$. \Box

Theorem 3. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for t > 0. Assume that $\frac{1}{h}$ is an integer > 1. Suppose $\varphi \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ and $\varphi \in \overline{\operatorname{span}U_h}$, where $U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)$. If for each $\xi \in Z(\varphi)$ there is a neighbourhood V of ξ such that $V \cap Z(\varphi)$ is contained in a finite number of hyperplanes, then $\operatorname{span}U_h$ is dense in $L_{\Phi}(\mathbb{R}^n)$.

Proof. Assume to the contrary that then there exists a nonzero functional $g \in (L_{\Phi}(\mathbb{R}^n))^*$ such that

$$\int_{\mathbb{R}^n} f(x)g(x)dx = 0, \quad \text{ for all } f \in \overline{\text{span}U_h}.$$

Then $g \in L_{\overline{\Phi}}(\mathbb{R}^n) = (L_{\Phi}(\mathbb{R}^n))^*$ by a result of [5]. By virtue of Lemma 2, span U_h is translation invariant, and hence,

(15)
$$\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \quad \forall j \ge 1, \quad \forall y \in \mathbb{R}^n.$$

Since $\varphi \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$, from (15) we get $(g * \sigma_h^j \varphi)(y) = 0$ for all $y \in \mathbb{R}^n$. The Fourier transform of $(g * \sigma_h^j \varphi)(x)$ is $h^{nj} \widehat{\varphi}(h^j t) \widehat{g}(t)$. Therefore

(16)
$$(\widehat{\sigma_h^j \varphi * g}) = h^{nj} \widehat{\varphi}(h^j.) \widehat{g} = 0, \ \forall j \ge 1.$$

Lemma 5 and (16) imply that

$$\operatorname{sp}(g) \subset \bigcap_{j=1}^{\infty} \{t \in \mathbb{R}^n : \widehat{\varphi}(h^j t) = 0\} = Z(\varphi).$$

By the hypothesis and Lemma 4, we get g = 0. This leads to a contradiction. Therefore $\overline{\text{span}U_h} = L_{\Phi}(\mathbb{R}^n)$. \Box

Corollary 2. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for t > 0. Assume that $\frac{1}{h}$ is an integer > 1. Suppose $\varphi \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ and $\varphi \in \overline{\operatorname{span}}U_h$, where $U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)$. If $Z(\varphi)$ is contained in a finite number of hyperplanes, then $\operatorname{span}U_h$ is dense in $L_{\Phi}(\mathbb{R}^n)$.

Remark 2. The conclusions of Theorem 2, Theorem 3 and Corollary 2 remain valid if the condition $\varphi \in \overline{\operatorname{span}U_h}$ is replaced by the condition $\lim_{h\to 0,h\in G} \operatorname{dist}(\varphi, \sigma_h S_0(\varphi))_{\Phi} = 0.$

Using the same argument as in the proof of [7, Proposition 6.1], we obtain the following two corollaries:

Corollary 3. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions and Φ satisfy Δ_2 -condition. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ with $\widehat{\varphi}(0) \neq 0$ and $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$\lim_{j \to \infty} \operatorname{dist}(f, \sigma_h^j S_0(\varphi))_{\Phi} = 0, \qquad \forall f \in L_{\Phi}(\mathbb{R}^n).$$

Corollary 4. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$, for t > 0. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap$ $L_{\Phi}(\mathbb{R}^n)$ and $\frac{1}{h}$ is an integer larger than 1. If $Z(\varphi)$ is contained in a finite number of hyperplanes and $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$\lim_{j \to \infty} \operatorname{dist}(f, \sigma_h^j S_0(\varphi))_{\Phi} = 0, \qquad \forall f \in L_{\Phi}(\mathbb{R}^n).$$

Acknowledgement

The author would like to thank Professor Ha Huy Bang for his guidance and encouragement and the referee for many suggestions.

References

- Ha Huy Bang, Spectrum of functions in Orlicz spaces, J. Math. Sci. Univ. Tokyo 4 (1997), 341-349.
- Paul R. Halmos, *Measure Theory*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg, 1983.

TRUONG VAN THUONG

- 4. O'Neil, R., Fractional integration in Orlicz space I., Trans. Amer. Math. Soc. **115** (1965), 300-328.
- 5. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, New York, 1995.
- 6. Walter Rudin, *Functional Analysis*, Tata McGraw-Hill Publishing Company Ltd. New Delhi, 1989.
- 7. Kang Zhao, Density of dilates of a shift-invariant subspace, J. of Math. Analysis and Appl. 184 (1994), 517-532.

DEPARTMENT OF MATHEMATICS, HUE UNIVERSITY 34 LE LOI STREET, HUE, VIETNAM