SOME COLLECTIONS OF FUNCTIONS DENSE IN AN ORLICZ SPACE

TRUONG VAN THUONG

Abstract. This paper presents sufficient conditions for a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$ to be dense in the Orlicz space $L_{\Phi}(\mathbb{R}^n)$.

INTRODUCTION

Let φ be a function defined on \mathbb{R}^n and a be a function defined on \mathbb{Z}^n . Their semi-discrete convolution [7] is defined by, for any $x \in \mathbb{R}^n$,

$$
\varphi *' a(x) = \sum_{\alpha \in \mathbb{Z}^n} \varphi(x - \alpha) a(\alpha),
$$

for which the series converges absolutely. Denote by $\ell_0(\mathbb{Z}^n)$ the space of all finitely supported functions on \mathbb{Z}^n and $S_0(\varphi)$ the image of $\ell_0(\mathbb{Z}^n)$ under φ *'. If $\varphi \in C(\mathbb{R}^n)$ then φ *' $a \in C(\mathbb{R}^n)$.

A collection F of functions on \mathbb{R}^n is called shift invariant [7] if for each $f \in F$, $\alpha \in \mathbb{Z}^n$, $f(. + \alpha) \in F$. Then $S_0(\varphi)$ is a linear span of the integer translates of φ and is shift invariant. A set F is called translation invariant if

$$
\tau_t: f \longrightarrow f(. + t)
$$

maps F into F for each $t \in \mathbb{R}^n$ and F is dilation invariant if

$$
\sigma_h: f \longrightarrow f(h^{-1}.)
$$

maps F into itself for each $h > 0$. Denote

Received January 26, 1999; in revised form March 26, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 46F99, 46E30.

Key words and phrases. Translation invariant, Fourier transform, theory of Orlicz spaces.

Supported by the National Basic Research Program in Natural Science.

$$
U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi).
$$

The problem of finding sufficient conditions on a collection of functions generated by translations of a single function to be dense in $L_p(\mathbb{R}^n)$ or $C_0(\mathbb{R}^n)$ was studied by Kang Zhao in [7]. He showed that for a subspace which is generated by U_h , where φ satisfies some certain conditions, the span U_h is dense in $L_p(\mathbb{R}^n)$ or $C_0(\mathbb{R}^n)$. This leads to the natural question under what conditions on the collection U_h and function φ , the linear span of U_h is dense in the Orlicz space $L_{\Phi}(\mathbb{R}^n)$?

In this paper, modifying the method of [7] we give some sufficient conditions for a collection of functions generated by translations of a single function in $L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$, to be dense in $L_\Phi(\mathbb{R}^n)$. We have to overcome some difficulties because $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L_p(\mathbb{R}^n)$ but $C_0^{\infty}(\mathbb{R}^n)$ is not generally dense in $L_{\Phi}(\mathbb{R}^n)$. Moreover, the results of this paper are generalizations of the ones given by Kang Zhao in [7].

RESULTS

Let $\Phi(t) : [0, +\infty) \longrightarrow [0, +\infty]$ be an arbitrary Young function, i.e., $\Phi(0) = 0, \, \Phi(t) \geq 0, \, \Phi(t) \not\equiv 0$ and $\Phi(t)$ is convex. We denote by $\overline{\Phi}(t)$ the Young conjugate function of $\Phi(t)$, i.e.,

$$
\overline{\Phi}(t) = \sup_{s \ge 0} \left\{ t s - \Phi(s) \right\}
$$

and by $L_{\Phi}(\mathbb{R}^n)$, the space of measurable functions $f(x)$ on \mathbb{R}^n such that

$$
\left|\int\limits_{\mathbb{R}^n} f(x)g(x)dx\right| < \infty
$$

for all $g(x)$ with $\rho(g, \overline{\Phi}) < \infty$, where

$$
\rho(g,\overline{\Phi}) = \int\limits_{\mathbb{R}^n} \overline{\Phi}(|g(x)|) dx.
$$

Then $L_{\Phi}(\mathbb{R}^n)$ is a Banach space with respect to the Orlicz norm

$$
||f||_{\Phi} = \sup \Big\{ \Big| \int_{\mathbb{R}^n} f(x)g(x)dx \Big| : \ \rho(g, \overline{\Phi}) \le 1 \Big\}.
$$

A Young function Φ is said to satisfy the Δ_2 -condition if

 $\Phi(2x) \leq K\Phi(x)$, $x \geq 0$ for some absolute constant $K > 0$ [see 5].

We first recall some results on Orlicz spaces [5,4,1]. We have:

1.
$$
||f||_{\Phi} = \sup \left\{ \int_{\mathbb{R}^n} |f(x)g(x)| dx : \rho(g, \overline{\Phi}) \le 1 \right\}.
$$

2. $L_{\Phi}(\mathbb{R}^n) \subset S'$, where S' is the dual of the space S of rapidly decreasing test functions.

3. If $f \in L_{\Phi}(\mathbb{R}^n)$ then $||f(. + t)||_{\Phi} = ||f||_{\Phi}$ for each $t \in \mathbb{R}^n$.

4. Let $f \in L_{\Phi}(\mathbb{R}^n)$, $h \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$. Then $||f * h||_{\Phi} \le$ $||f||_{\Phi}||h||_1$ and

$$
\int_{\mathbb{R}^n} |f(x)g(x)|dx \leq ||f||_{\Phi}||g||_{\overline{\Phi}}.
$$

Lemma 1. Let Φ be a Young function satisfying Δ_2 -condition. Then for each $f \in L_{\Phi}(\mathbb{R}^n)$, one has

(1)
$$
\lim_{t \to 0} ||f(. + t) - f||_{\Phi} = 0, \qquad t \in \mathbb{R}^{n}.
$$

Proof. We first prove that $f \in L^1_{loc}(\mathbb{R}^n)$. For any $m = 1, 2, 3, \ldots$, put $K_m = [-m, m]^n$. It follows from the convexity of Φ that

$$
\Phi\Big(\frac{1}{\operatorname{mes} K_m}\int\limits_{K_m}|f(x)|dx\Big)\leq \frac{1}{\operatorname{mes} K_m}\int\limits_{K_m}\Phi(|f(x)|)dx.
$$

Since $f \in L_{\Phi}(\mathbb{R}^n)$, we have $\int_{\mathbb{R}^n} \Phi(|f(x)|)dx < \infty$. From the above insince $f \in L_{\Phi}(\mathbb{R}^n)$, we have $\int_{\mathbb{R}^n} \Psi(|f(x)|) dx < \infty$. From the above in-
equality and the hypothesis of Φ , it follows that $\int_{K_m} |f(x)| dx < \infty$. Hence $f \in L^1_{loc}(\mathbb{R}^n)$.

To prove the lemma, it suffices to show that for any sequence $\{t_k\} \subset$ \mathbb{R}^n , if $t_k \to 0$, as $k \to \infty$, then

$$
\lim_{k \to \infty} ||f(. + t_k) - f||_{\Phi} = 0.
$$

Assume to the contrary that there exists $\{t_k\} \subset \mathbb{R}^n$, $t_k \to 0$ such that

(2)
$$
||f(x + t_k) - f||_{\Phi} \ge \varepsilon \quad \text{for some } \varepsilon > 0.
$$

As shown above, $f \in L^1_{loc}(\mathbb{R}^n)$. For each K_m , we obtain

$$
\int\limits_{K_m} |f(x+t_k) - f(x)| dx \to 0, \quad \text{as } k \to \infty.
$$

Therefore, by [2, p.93, Theorem D], there exists a subsequence $\{t_{k_j}\}\subset$ $\{t_k\}$ such that $f(. + t_{k_j}) \rightarrow f$ almost everywhere on K_m . Therefore, there exists a subsequence such that $\{f(x + t_{k_{j_h}})\} \to f$ a.e. on \mathbb{R}^n . For simplicity, we still denote it by $\{f(. + t_{k_j})\}$.

Since Φ is a convex function and satisfies Δ_2 -condition, we have

$$
\Phi(|f(x + t_{k_j}) - f(x)|) \leq \Phi(|f(x + t_{k_j})| + |f(x)|)
$$

\n
$$
\leq \frac{1}{2}[\Phi(2|f(x + t_{k_j})|) + \Phi(2|f(x)|)]
$$

\n
$$
\leq \frac{K}{2}[\Phi(|f(x + t_{k_j})|) + \Phi(|f(x)|)].
$$

Hence

$$
0 \le \frac{K}{2} [\Phi(f(x + t_{k_j})) + \Phi(f(x))] - \Phi(|f(x + t_{k_j}) - f(x)|), \quad \forall x \in \mathbb{R}^n.
$$

Applying Fatou's lemma to the subsequence $\{\Phi(f(.+t_{k_j}))\}$ and using the equality

$$
\lim_{j \to \infty} \int_{\mathbb{R}^n} \Phi(f(x + t_{k_j})) dx = \int_{\mathbb{R}^n} \Phi(f(x)) dx,
$$

we obtain

$$
K \int_{\mathbb{R}^n} \Phi(f(x))dx
$$

\n
$$
\leq \lim_{j \to \infty} \inf \int_{\mathbb{R}^n} \left[\frac{K}{2} [\Phi(f(x + t_{k_j})) + \Phi(f(x))] - \Phi(f(x + t_{k_j}) - f(x)] \right] dx
$$

\n
$$
= \lim_{j \to \infty} \frac{K}{2} \int_{\mathbb{R}^n} [\Phi(f(x + t_{k_j})) + \Phi(f(x))] dx
$$

\n
$$
- \lim_{j \to \infty} \sup \int_{\mathbb{R}^n} \Phi(f(x + t_{k_j}) - f(x)) dx
$$

\n(3)
\n
$$
= K \int \Phi(f(x)) dx - \lim \sup \int \Phi(f(x + t_{k_j}) - f(x)) dx.
$$

$$
= K \int_{\mathbb{R}^n} \Phi(f(x)) dx - \lim_{j \to \infty} \sup \int_{\mathbb{R}^n} \Phi(f(x + t_{k_j}) - f(x)) dx.
$$

By inequality (3),

$$
\int_{\mathbb{R}^n} \Phi(f(x+t_{k_j})-f(x))dx \to 0, \text{ as } j \to \infty.
$$

By [5, Theorem 12], $|| f(. + t_{k_j}) - f ||_{\Phi} \rightarrow 0$, which contradicts (2).

The subsequent two lemmas can be proved in a manner similar to that of Lemmas 2.1 and 2.2 of [7]. We include their proofs for the sake of completeness. They will be helpful for the understanding of the arguments that will be used in the sequel.

Denote by \mathbb{R}^* the abelian group of all nonzero real numbers with the operation of ordinary multiplication and

$$
dist(\varphi, S)_{\Phi} = \min\{\|\varphi - f\|_{\Phi}, f \in S\}.
$$

Lemma 2. Let Φ be a Young function satisfying Δ_2 -condition and $\varphi \in \mathcal{L}$ $L_{\Phi}(\mathbb{R}^n)$. Assume that $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\text{span}U_h}$, where $U_h =$ ∞ $j=1$ σ_h^j $\partial_h^j S_0(\varphi)$, then $\overline{\text{span}U_h}$ is translation invariant.

Proof. By the definition of dilatation, for each $h > 0$, we have

$$
\sigma_h^j f(x) = f(h^{-j}x) \quad \text{for all} \quad j \ge 1.
$$

Let f be an arbitrary in σ_h^j ${}_{h}^{j}S_{0}(\varphi)$, i.e. $f=\sigma_{h}^{j}$ $h_B^j g$ with $g \in S_0(\varphi)$. For any $\alpha \in \mathbb{Z}^n,$ we get

$$
f(x+\alpha) = \sigma_h^j g(x+\alpha) = g(h^{-j}(x+\alpha))
$$

= $g(h^{-j}x + h^{-j}\alpha) = \sum_{\beta \in \mathbb{Z}^n} \varphi(h^{-j}x - \beta) a(\beta).$

Since $g \in S_0(\varphi)$, we have $g(. + \alpha) \in S_0(\varphi)$. Hence $f(. + \alpha) \in \sigma_h^j$ $^{\jmath}_h S_0(\varphi).$ This proves that σ_h^j $h^j h S_0(\varphi)$ is shift invariant. Therefore U_h is shift invariant and so is span U_h .

For each $\beta \in \mathbb{Z}^n$, by Result 3, we have

$$
\|\varphi(\cdot - \beta) - f(\cdot - \beta)\|_{\Phi} = \|\varphi - f\|_{\Phi}, \quad \text{for all } f \in \text{span} U_h.
$$

Since $\text{span}U_h$ is shift invariant, we have

$$
dist(\varphi(. - \beta), span U_h)_{\Phi} = dist(\varphi, span U_h)_{\Phi}.
$$

By virtue of $\varphi \in \overline{\text{span}U_h}$ it follows that $\varphi(-\beta) \in \overline{\text{span}U_h}$ for every $\beta \in \overline{\text{span}U_h}$ \mathbb{Z}^n . This implies that $S_0(\varphi) \subset \overline{\text{span}U_h}$. Note that $U_h \bigcup S_0(\varphi) = \sigma_h^{-1}$ $\overline{h}^{\text{-1}}U_h$. Then

(4)
$$
\overline{\text{span}U_h} = \overline{\text{span}\sigma_h^{-1}U_h}.
$$

On the other hand, we have

(5)
$$
\sigma_h^k \text{span} U_h = \text{span} \sigma_h^k U_h = \sigma_h^{k+1} \text{span} \sigma_h^{-1} U_h.
$$

Combining (4) and (5), we conclude that

$$
\overline{\text{span}\sigma_h^k U_h} = \overline{\text{span}\sigma_h^{k+1} U_h}, \quad \text{for any } k \ge 1.
$$

Therefore

(6)
$$
\overline{\text{span}U_h} = \bigcap_{j=1}^{\infty} \overline{\text{span}\sigma_h^j U_h}.
$$

For each $\alpha \in \mathbb{Z}^n$, $\sigma_h^k S_0(\varphi)$ is $h^k \alpha$ -translation invariant and so is $\text{span}\sigma_h^k U_h$. From (6) it follows that $\overline{\text{span}U_h}$ is $h^k \alpha$ -translation invariant.

Since \bigcup^{∞} $j=k$ $h^{j}\mathbb{Z}^{n}$ is dense in \mathbb{R}^{n} , for each $k \geq 1$, we have, by using Lemma 1,

$$
H_{\rm EIIIII} \sim 1000
$$

$$
\lim_{t \to 0} \|g(\cdot + t) - g\|_{\Phi} = 0, \quad \text{for all } g \in \text{span} U_h.
$$

Hence $\overline{\text{span}U_h}$ is translation invariant. \Box

Lemma 3. Let Φ be a Young function satisfying Δ_2 -condition. Assume that $\varphi \in L_{\Phi}(\mathbb{R}^n)$ and G is a subgroup of \mathbb{R}^* . If

$$
\lim_{h \in G} \text{dist}(\varphi, \sigma_h S_0(\varphi))_{\Phi} = 0,
$$

then $\overline{\overset{\infty}{\bigcup}}$ $j=1$ σ_h^j $\mathcal{L}_h^j S_0(\varphi)$ is a translation invariant subspace of $L_\Phi(\mathbb{R}^n)$, for any sequence $\{h_j\} \subset G$ with $\lim_{j \to \infty} h_j = 0$.

Proof. For any $\beta \in \mathbb{Z}^n$, $h \neq 0$ then $h^{-1}\beta = \alpha + \xi$, with $\alpha \in \mathbb{Z}^n$, $\xi \in [0, 1)^n$. Fix a function $a \in \ell_0(\mathbb{Z}^n)$. We have

(7)
$$
\|\varphi(\cdot - \beta) - \sigma_h(\varphi *' a)\|_{\Phi} = \|\varphi(\cdot - h\xi) - \sigma_h(\varphi *' b)\|_{\Phi},
$$

with $a(\beta) = b(\beta - \alpha)$. From (1) and the hypothesis

$$
\lim_{h \to 0} \text{dist}(\varphi, \sigma_h S_0(\varphi))_{\Phi} = 0,
$$

it follows that

$$
\lim_{h \to 0} \|\varphi(a-h\xi) - \sigma_h(\varphi *' b)\|_{\Phi} = 0.
$$

From (7) we conclude that $\varphi(. - \beta) \in$ $\overline{\infty}$ $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$, for all $\beta \in \mathbb{Z}^n$. Therefore

(8)
$$
S_0(\varphi) \subset \overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}.
$$

On the other hand, we have

$$
\text{dist}(\sigma_{h_1}f, \sigma_{h_j}S_0(\varphi))_{\Phi} \leq \text{dist}(f, \sigma_{h_jh_1^{-1}}S_0(\varphi))_{\Phi}, \quad f \in S_0(\varphi).
$$

Therefore

$$
\sigma_{h_1} S_0(\varphi) \subset \overline{\bigcup_{j=2}^{\infty} \sigma_{h_j} S_0(\varphi)}.
$$

From the hypothesis that G is a subgroup and (8) , we get

$$
S_0(\varphi) \subset \overline{\bigcup_{j=m}^{\infty} \sigma_{h_j/h_k} S_0(\varphi)}
$$

for every $m \geq k \geq 1$. By an argument similar to the previous one, we obtain

(9)
$$
\sigma_{h_k} S_0(\varphi) \subset \overline{\bigcup_{j=m}^{\infty} \sigma_{h_j} S_0(\varphi)}
$$

for every $m \geq k \geq 1$. Hence

(10)
$$
\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)} = \bigcap_{k=1}^{\infty} \overline{\bigcup_{j=k}^{\infty} \sigma_{h_j} S_0(\varphi)}.
$$

For each $\alpha \in \mathbb{Z}^n$, $\sigma_{h_k} S_0(\varphi)$ is $h_k \alpha$ -translation invariant and so is $\overline{\infty}$ $\bigcup_{j=m}^{\infty} \sigma_{h_j} S_0(\varphi)$ for every $m \geq k \geq 1$. From (10) it follows that $\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$ is $h_k \alpha$ -translation invariant. For any sequence $\{h_j\} \subset G$, $h_j \to 0$ and $t \in \mathbb{R}^n$ there exists a point $\alpha \in \mathbb{Z}^n$ such that $||t - \alpha h_j||$ (the ordinary norm on \mathbb{R}^n) is sufficiently small, for some $j \geq 1$.

Let $f \in$ $\overline{\infty}$ $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$ and $\varepsilon > 0$. Then there exists a function $g \in$ ∞ $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$ such that

(11)
$$
||f(+t) - g(+t)||_{\Phi} < \varepsilon.
$$

Clearly $g \in \sigma_{h_k} S_0(\varphi)$, for some $k \geq 1$. From (9) we conclude that $g \in$ $\overline{\infty}$ $\bigcup_{j=m} \sigma_{h_j} S_0(\varphi)$ for every integer m larger than 1. From (1) we have

(12)
$$
||g(.+t) - g(.+h_j\alpha)||_{\Phi} < \varepsilon.
$$

A combination of (11) and (12) yields $f(. + t) \in$ $\overline{\infty}$ $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$. Thus $\overline{\infty}$

 $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$ is translation invariant. Let $f, g \in S_0(\varphi)$, $r, t \geq 1$. We have

$$
dist(\sigma_{h_r}f + \sigma_{h_t}g, \sigma_h S_0(\varphi))\Phi
$$

$$
\leq dist(f, \sigma_{hh_r^{-1}}S_0(\varphi))\Phi + dist(g, \sigma_{hh_t^{-1}}S_0(\varphi))\Phi.
$$

This implies that if $f, g \in$ $\overline{\infty}$ $\bigcup_{j=1} \sigma_{h_j} S_0(\varphi)$ and $\lambda, \gamma \in \mathbb{R}$, then $\lambda f + \gamma g \in$ $\overline{\infty}$ $\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$. Hence $\overline{\bigcup_{j=1}^{\infty} \sigma_{h_j} S_0(\varphi)}$ is a translation invariant subspace.

The spectrum of a function g, denoted by $sp(g)$, is defined to be the support of \hat{q} , the Fourier transform of q [1].

Lemma 4. [1] Let $\Phi(t) > 0$ for $t > 0$, $f \in L_{\Phi}(\mathbb{R}^n)$, $f(x) \not\equiv 0$ and $\xi^0 \in$ $\operatorname{sp}(f)$ be an arbitrary point. Then the restriction of \widehat{f} on any neighbourhood of ξ^0 cannot concentrate on any finite number of hyperplanes.

The following lemma, which will be used in the sequel, is the analog for Orlicz spaces of [6, Theorem 9.3], and has a similar proof.

Lemma 5. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions. Assume that $f \in L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$. If $f * g = 0$ then

$$
\mathrm{sp}(g) \subset Z(f) := \{ t \in \mathbb{R}^n : \widehat{f}(t) = 0 \}.
$$

Proof. For each t in the complement of $Z(f)$, we have $\hat{f}(t) \neq 0$. Without loss of generality, we may assume that $\hat{f}(t) = 1$. By Lemma 9.2 [6] there exists $h \in L_1(\mathbb{R}^n)$ with $||h||_1 < 1$ such that $\widehat{h}(s) = 1 - \widehat{f}(s)$ for all s in some neighbourhood V of t .

To prove the lemma, it suffices to show that $\hat{g} = 0$ in V, i.e., for every $\psi \in S$ such that $\hat{\psi}$ (the Fourier transform of ψ) has its support in V, one proves that $\hat{g}(\hat{\psi}) = 0$. By the definition of the Fourier transform of a distribution $g \in S'$ [3,6], we have

$$
\widehat{g}(\widehat{\psi}) = g(\check{\psi}) = (g * \psi)(0),
$$

where $\check{\psi}(x) = \psi(-x)$.

We shall prove that $(g * \psi)(x) = 0$ for all $x \in \mathbb{R}^n$. Fix a function ψ in S. Put $g_0 = \psi$, $g_j = h * g_{j-1}$, for $j \ge 1$ and $G =$ \approx $j=0$ g_j . It is clear that $G \in L_1(\mathbb{R}^n)$. In fact, by Young's inequality for convolution products, we get

$$
||g_j||_1 \leq ||h||_1 ||g_{j-1}||_1 \leq ||h||_1^j ||\psi||_1.
$$

X[∞]

This implies that

$$
||G||_1 \le \sum_{j=1}^{\infty} ||h||_1^j ||\psi||_1 < \infty.
$$

Since $\widehat{h}(s) = 1 - \widehat{f}(s)$ on the support of $\widehat{\psi}$, we have

$$
[1 - \widehat{h}(s)]\widehat{\psi}(s) = \widehat{f}(s)\widehat{\psi}(s) = \widehat{f}(s)\widehat{g}_0(s)
$$

$$
[\widehat{h}(s) - \widehat{h}^2(s)]\widehat{\psi}(s) = \widehat{f}(s)\widehat{\psi}(s)\widehat{h}(s) = \widehat{f}(s)\widehat{g}_1(s)
$$

$$
\dots
$$

Therefore, $\hat{\psi}(s) = \hat{f}(s)\hat{G}(s)$ for all $s \in V$. It is clear that

(13)
$$
\widehat{\psi} = \widehat{f}\widehat{G} = \widehat{f * G}.
$$

From (13) we get $\psi = G * f$. Since $f, G \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$, one can see that

$$
\|\psi * g\|_{\overline{\Phi}} = \|(G*f)*g\|_{\overline{\Phi}} \le \|G*f\|_1 \|g\|_{\overline{\Phi}} \le \|G\|_1 \|f\|_1 \|g\|_{\overline{\Phi}} < \infty.
$$

Since the convolution product is associative, we get

$$
\psi * g = (G * f) * g = G * (f * g) = 0.
$$

Hence $\hat{q}(\hat{\psi}) = 0$. It is clear that $\hat{q} = 0$ in the neighbourhood V. This implies that t in the complement of the spectrum of q. Therefore sp(q) ⊂ $Z(f).$ \square

Theorem 1. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for $t > 0$. Assume that Y is a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$. If for each $\xi \in Z(Y) :=$ $f \in Y$ $\{t \in \mathbb{R}^n : \hat{f}(t) = 0\}$ there is a neighbourhood V of ξ such that $V \cap Z(Y)$ is contained in a finite number of hyperplanes, then Y is dense in $L_{\Phi}(\mathbb{R}^n)$.

Proof. Assume to the contrary that Y is not dense in $L_{\Phi}(\mathbb{R}^n)$. Then, by the Hahn-Banach theorem, there exists a nonzero functional $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ such that

$$
\int_{\mathbb{R}^n} f(x)g(x)dx = 0, \quad \text{for all } f \in \overline{Y},
$$

by [5, Corollary 6] $(L_{\Phi}(\mathbb{R}^n))^* = L_{\overline{\Phi}}(\mathbb{R}^n)$. Since Y is a translation invariant subspace, we have

$$
\int_{\mathbb{R}^n} f(y-x)g(x)dx = 0, \quad \text{for all } f \in Y.
$$

In other words, $f * g = 0$ for all $f \in Y$. By Lemma 5, we obtain

$$
\text{sp}(g) \subset \{ t \in \mathbb{R}^n : \ \widehat{f}(t) = 0 \}, \ \text{ for all } f \in Y.
$$

Hence, $sp(g) \subset Z(Y)$.

By hypothesis, it follows that for each $\xi \in sp(q)$ there is a neighbourhood V of ξ such that $V \cap sp(q)$ is contained in a finite number of hyperplanes. Applying Lemma 4, we have $g = 0$. This is impossible. \Box

Corollary 1. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for $t > 0$. Assume that Y is a translation invariant subspace of $L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$. If $Z(Y)$ is contained in a finite number of hyperplanes, then Y is dense in $L_{\Phi}(\mathbb{R}^n)$.

Remark 1. In the previous theorem, the assumption $\overline{\Phi}(t) > 0$ for $t > 0$ can be dropped when we replace the hypothesis that for each $\xi \in Z(Y)$ there is a neighbourhood V of ξ such that $V \cap Z(Y)$ is contained in a finite number of hyperplanes by the hypothesis that $Z(Y) = \emptyset$.

Theorem 2. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions and let Φ satisfy Δ_2 -condition. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$ with $\widehat{\varphi}(0) \neq 0$ and $\frac{1}{1}$ $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\text{span}U_h}$, where $U_h =$ ∞ $j=1$ σ_h^j $\frac{d}{dh}S_0(\varphi)$, then $\overline{\text{span}U_h} = L_{\Phi}(\mathbb{R}^n)$.

Proof. For any $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ satisfying

$$
\int_{\mathbb{R}^n} f(x)g(x)dx = 0,
$$

for all $f \in \overline{\text{span}U_h}$, we will prove that $g = 0$. By virtue of Lemma 2, we get

$$
\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \quad \forall j \ge 1, \quad \text{for all } y \in \mathbb{R}^n.
$$

Since $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$ and σ_h^j $\psi_h^j \varphi \in L_1(\mathbb{R}^n)$, we have

$$
(g * \sigma_h^j \varphi)(y) = g(\sigma_h^j \varphi(y - .)) = 0,
$$

for all $y \in \mathbb{R}^n$. Note that the Fourier transform of σ_h^j $\partial_h^j \varphi(x)$ is $h^{jn}\widehat{\varphi}(h^jt)$. It follows from Lemma 5 that

(14)
$$
\mathrm{sp}(g) \subset \bigcap_{j=1}^{\infty} \{t \in \mathbb{R}^n : \widehat{\varphi}(h^j t) = 0\} = Z(\varphi).
$$

Since $\varphi \in L_1(\mathbb{R}^n)$ and $\widehat{\varphi}(0) \neq 0$, we have $\widehat{\varphi}(h^j t) \neq 0$ for each $t \in$ \mathbb{R}^n and j sufficiently large. This shows that $Z(\varphi) = \emptyset$. From (14) we conclude that $\hat{g} = 0$. Hence $g = 0$. By the Hahn-Banach theorem, we have $\overline{\text{span}U_h} = L_{\Phi}(\mathbb{R}^n).$

Theorem 3. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for $t > 0$. Assume that $\frac{1}{h}$ is an integer > 1. Suppose $\varphi \in L_1(\mathbb{R}^n) \cap L_{\Phi}(\mathbb{R}^n)$ and $\varphi \in \overline{\text{span}U_h}$, where $U_h =$ ∞ $j=1$ σ_h^j $\partial_h^j S_0(\varphi)$. If for each $\xi \in Z(\varphi)$ there is a neighbourhood V of ξ such that $V \cap Z(\varphi)$ is contained in a finite number of hyperplanes, then span U_h is dense in $L_{\Phi}(\mathbb{R}^n)$.

Proof. Assume to the contrary that then there exists a nonzero functional $g \in (L_{\Phi}(\mathbb{R}^n))^*$ such that

$$
\int_{\mathbb{R}^n} f(x)g(x)dx = 0, \quad \text{ for all } f \in \overline{\text{span}U_h}.
$$

Then $g \in L_{\overline{\Phi}}(\mathbb{R}^n) = (L_{\Phi}(\mathbb{R}^n))^*$ by a result of [5]. By virtue of Lemma 2, $\overline{\text{span}U_h}$ is translation invariant, and hence,

(15)
$$
\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \quad \forall j \ge 1, \quad \forall y \in \mathbb{R}^n.
$$

Since $\varphi \in L_1(\mathbb{R}^n)$ and $g \in L_{\overline{\Phi}}(\mathbb{R}^n)$, from (15) we get $(g * \sigma_h^j)$ $_{h}^{j}\varphi)(y) =$ 0 for all $y \in \mathbb{R}^n$. The Fourier transform of $(g * \sigma_h^j)$ $h^j(\varphi)(x)$ is $h^{nj}\widehat{\varphi}(h^jt)\widehat{g}(t)$. Therefore

(16)
$$
(\widehat{\sigma_h^j \varphi * g}) = h^{nj} \widehat{\varphi}(h^j) \widehat{g} = 0, \ \forall j \ge 1.
$$

Lemma 5 and (16) imply that

$$
\mathrm{sp}(g) \subset \bigcap_{j=1}^{\infty} \{ t \in \mathbb{R}^n : \widehat{\varphi}(h^j t) = 0 \} = Z(\varphi).
$$

By the hypothesis and Lemma 4, we get $g = 0$. This leads to a contradiction. Therefore $\overline{\text{span}U_h} = L_{\Phi}(\mathbb{R}^n)$. \Box

Corollary 2. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$ for $t > 0$. Assume that $\frac{1}{h}$ is an integer > 1. Suppose $\varphi \in L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$ and $\varphi \in \overline{\text{span}U_h}$, where $U_h =$ ∞ $j=1$ σ_h^j $\partial_h^j S_0(\varphi)$. If $Z(\varphi)$ is contained in a finite number of hyperplanes, then span U_h is dense in $L_\Phi(\mathbb{R}^n)$.

Remark 2. The conclusions of Theorem 2, Theorem 3 and Corollary 2 remain valid if the condition $\varphi \in \overline{\text{span}U_h}$ is replaced by the condition $\lim_{h\to 0,h\in G} \text{dist}(\varphi,\sigma_h S_0(\varphi))_{\Phi} = 0.$

Using the same argument as in the proof of [7, Proposition 6.1], we obtain the following two corollaries:

Corollary 3. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions and Φ satisfy Δ_2 -condition. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap L_\Phi(\mathbb{R}^n)$ with $\widehat{\varphi}(0) \neq 0$ and $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$
\lim_{j \to \infty} \text{dist}(f, \sigma_h^j S_0(\varphi))_{\Phi} = 0, \qquad \forall f \in L_{\Phi}(\mathbb{R}^n).
$$

Corollary 4. Let $(\Phi, \overline{\Phi})$ be a complementary pair of Young functions, Φ satisfy Δ_2 -condition and $\overline{\Phi}(t) > 0$, for $t > 0$. Assume that $\varphi \in L_1(\mathbb{R}^n) \cap$ $L_\Phi(\mathbb R^n)$ and $\frac{1}{h}$ is an integer larger than 1. If $Z(\varphi)$ is contained in a finite number of hyperplanes and $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$
\lim_{j \to \infty} \text{dist}(f, \sigma_h^j S_0(\varphi))_{\Phi} = 0, \qquad \forall f \in L_{\Phi}(\mathbb{R}^n).
$$

Acknowledgement

The author would like to thank Professor Ha Huy Bang for his guidance and encouragement and the referee for many suggestions.

REFERENCES

- 1. Ha Huy Bang, Spectrum of functions in Orlicz spaces, J. Math. Sci. Univ. Tokyo 4 (1997), 341-349.
- 2. Paul R. Halmos, Measure Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- 3. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg, 1983.

208 TRUONG VAN THUONG

- 4. O'Neil, R., Fractional integration in Orlicz space I., Trans. Amer. Math. Soc. 115 (1965), 300-328.
- 5. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, New York, 1995.
- 6. Walter Rudin, Functional Analysis, Tata McGraw-Hill Publishing Company Ltd. New Delhi, 1989.
- 7. Kang Zhao, Density of dilates of a shift-invariant subspace, J. of Math. Analysis and Appl. 184 (1994), 517-532.

Department of Mathematics, Hue University 34 Le Loi Street, Hue, Vietnam