AN INVARIANT PROPERTY OF INVEX FUNCTIONS AND APPLICATIONS

DO VAN LUU¹ AND NGUYEN XUAN HA²

Abstract. Under directional differentiability assumptions, we prove that the minimum or the maximum of a finite family of invex functions is again an invex function. This invariant property of the invex functions is used to obtain first-order optimality conditions for a class of optimization problems.

1. INTRODUCTION

Hanson's paper [10] is the starting point of the theory of invex functions. The terms invex and cone-invex were introduced by Craven [3] who proved that the composition $g \circ f$, where g is a convex function and f is differentiable with f' having full rank, is an invex function.

The theory of invex functions have been extensively studied by many authors (see e.g. [1], [3]-[8], [10]-[14]). Craven and Glover [4] characterized invexity for quasidifferentiable functions in terms of Lagrange multipliers, and presented a number of classes of invex functions. Noted that Gâteaux differentiable functions satisfying Slater's condition are invex (see [4]).

In this paper we shall prove that the minimum (or the maximum) of a finite family of invex functions is an invex function. We shall show some applications of this invariant property to mathematical programming.

The above-mentioned property of invex functions is proved in Section 2. In Section 3, it is used to obtain first-order optimality conditions for a class of optimization problems.

2. A property of invex functions

Let f be a real-valued function defined on a Banach space X .

Received February 5, 1998; in revised form July 19, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26 B 25, Secondary 90 C 30, 49 K 35 Key words and phrases. Invex function, directional derivative, Clarke's generalized derivative, Clarke's generalized gradient, regular function.

Recall that the directional derivative of f at x_0 , with respect to d , is defined to be the limit

$$
f'(x_0; d) = \lim_{\lambda \downarrow 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda},
$$

if it exists.

The function f is called invex at x_0 if there exist a neighbourhood U of x_0 and a function $\omega(., x_0): U \to X$ such that

(1)
$$
f(x) - f(x_0) \ge f'(x_0; \omega(x, x_0)).
$$

Note that a convex function f on a convex subset A in X is invex at each point $x_0 \in A$ with $\omega(x, x_0) = x - x_0$ (see e.g. [4]).

Following [2], a locally Lipschitz function at x_0 is called regular at x_0 if the directional derivative $f'(x_0;.)$ exists and

$$
f'(x_0;.) = f^0(x_0;.).
$$

where $f^0(x_0;.)$ denotes Clarke's generalized derivative of f at x_0 .

If the function f is locally Lipschitz and regular at x_0 then (1) can be replaced by the condition

$$
f(x) - f(x_0) \ge f^0(x_0; \omega(x, x_0))
$$

or for every $\zeta \in \partial f(x_0)$,

$$
f(x) - f(x_0) \ge \langle \zeta, \omega(x, x_0) \rangle,
$$

where $\partial f(x_0)$ stands for Clarke's generalized gradient of f at x_0 .

Let f_1, f_2, \ldots, f_k be real-valued functions defined on a Banach space X. Define

(2)
$$
f(x) = \min_{1 \leq i \leq k} f_i(x).
$$

Note that when f_1, f_2, \ldots, f_k are convex functions, the function f may be nonconvex.

For example, we consider the two functions

$$
f_1(x) = (x+1)^2
$$
, $f_2 = (x-1)^2$ $(x \in R)$.

It is obvious that $f_1(x)$ and $f_2(x)$ are convex functions while the following function is nonconvex:

$$
f(x) = \min \{ f_1(x), f_2(x) \} = \begin{cases} (x+1)^2, & \text{if } x \le 0, \\ (x-1)^2, & \text{if } x > 0. \end{cases}
$$

However, the function f is invex at each point $x_0 \in R$ with respect to the function $\omega(x, x_0) = x - x_0$.

Motivated by this example we shall prove the following result.

Theorem 1. Assume that the functions f_1, f_2, \ldots, f_k are continuous, and directionally differentiable at x_0 . Suppose, in addition, that the functions f_1, f_2, \ldots, f_k are invex at x_0 with respect to a function ω . Then the function f defined by (2) is invex at x_0 with respect to the function ω .

Proof. In order to prove the function f defined by (2) is invex at x_0 we shall begin by showing that

(3)
$$
f'(x_0; d) = \min_{i \in I(x_0)} f'_i(x_0; d),
$$

where

$$
I(x_0) := \Big\{ i \in \{1, 2, \dots, k\} : f_i(x_0) = \min_{1 \le j \le k} f_j(x_0) \Big\}.
$$

Note that the formula (3) war proved for finite-dimensional case in [9]. Here it is proved for the infinite case.

Indeed, for $i \in I(x_0)$ one has

$$
f_i(x_0) < f_j(x_0) \quad (\forall j \notin I(x_0)).
$$

By setting

$$
\varepsilon = \min_{j \notin I(x_0)} f_j(x_0) - f_i(x_0) \quad (i \in I(x_0))
$$

we get $\varepsilon > 0$. Since $f_i(x_0) = f(x_0)$ for every $i \in I(x_0)$, ε does not depend on the choice of i.

Since the functions f_1, f_2, \ldots, f_k are continuous, there is a neighbourhood U of 0 such that for every $x \in U$, $i \in I(x_0)$, $j \notin I(x_0)$,

$$
f_i(x_0 + x) < f_i(x_0) + \frac{\varepsilon}{3} < f_j(x_0) - \frac{\varepsilon}{3} < f_j(x_0 + x),
$$

which implies that

(4)
$$
\min_{1 \le i \le k} f_i(x_0 + x) = \min_{i \in I(x_0)} f_i(x_0 + x) \quad (\forall x \in U).
$$

On the other hand, it follows from (4) that

$$
f'(x_0; d) = \lim_{t \downarrow 0} \frac{\min_{1 \le i \le k} f_i(x_0 + td) - \min_{1 \le i \le k} f_i(x_0)}{t}
$$

=
$$
\lim_{t \downarrow 0} \frac{\min_{i \in I(x_0)} f_i(x_0 + td) - \min_{i \in I(x_0)} f_i(x_0)}{t}
$$

=
$$
\lim_{t \downarrow 0} \frac{\min_{i \in I(x_0)} \{f_i(x_0 + td) - \min_{i \in I(x_0)} f_i(x_0)\}}{t}
$$

=
$$
\lim_{t \downarrow 0} \min_{i \in I(x_0)} \frac{f_i(x_0 + td) - f_i(x_0)}{t}
$$

Since for each $i \in I(x_0)$, the function

$$
\varphi_i(t) := \frac{f_i(x_0 + td) - f_i(x_0)}{t}
$$

(with $\varphi_i(0) = f'_i(\overline{x}; d)$) is continuous at $t = 0$, the function $\min_{i \in I}$ $\min_{i\in I(x_0)} \varphi_i(t)$ is also continuous at 0. Hence

$$
f'(x_0; d) = \min_{i \in I(x_0)} \lim_{t \downarrow 0} \frac{f_i(x_0 + td) - f_i(x_0)}{t}
$$

=
$$
\min_{i \in I(x_0)} f'_i(x_0; d).
$$

By the hypotheses, the functions f_1, f_2, \ldots, f_k are invex with respect to the same function ω . Hence, for some neighbourhood U of 0 and for each $i \in I(x_0)$, we have

$$
f_i(x) - f_i(x_0) \ge f'_i(x_0; \omega(x, x_0))
$$
 ($\forall x \in x_0 + U$),

whence

$$
f_i(x) - f_i(x_0) \ge \min_{i \in I(x_0)} f'_i(x_0; \omega(x, x_0)) \quad (\forall x \in x_0 + U).
$$

Therefore, for every $x \in x_0 + U$ and $i \in I(x_0)$,

$$
f_i(x) - \min_{i \in I(x_0)} f_i(x_0) \ge \min_{i \in I(x_0)} f'_i(x_0; \omega(x, x_0)).
$$

Hence

(5)
$$
\min_{i \in I(x_0)} f_i(x) - \min_{i \in I(x_0)} f_i(x_0) \geq \min_{i \in I(x_0)} f'_i(x_0; \omega(x, x_0)).
$$

Substituting (3) and (4) into (5) yields

$$
\min_{1 \le i \le k} f_i(x) - \min_{1 \le i \le k} f_i(x_0) \ge f'(x_0; \omega(x, x_0)) \quad (\forall x \in x_0 + U).
$$

Consequently, f is a invex function at x_0 . This completes the proof. \Box

Corollary 1. Assume that f_1, f_2, \ldots, f_k are convex, locally Lipschitz functions at x_0 . Then, the function $f(x)$ defined by (2) is invex at x_0 , with respect to the function $\omega(x, x_0) = x - x_0$.

Proof. By the hypotheses the functions f_1, f_2, \ldots, f_k are directionally differentiable at x_0 and invex with respect to the same function $\omega(x, x_0) =$ $x - x_0$. The conclusion follows from Theorem 1. \Box

Let g_1, g_2, \ldots, g_k be real-valued functions defined on X. Let us consider the function

(6)
$$
g(x) = \max_{1 \leq i \leq k} g_i(x).
$$

By an argument analogous to that used for the proof of Theorem 1 we get the following.

Theorem 2. Assume that the function g_1, g_2, \ldots, g_k are continuous, and directionally differentiable at x_0 . Suppose, furthermore, that the functions g_1, g_2, \ldots, g_k are invex at x_0 , with respect to a function ω . Then, the function g defined by (6) is invex at x_0 , with respect to the function ω .

3. Applications in mathematical programming

Let $\varphi_1, \varphi_2, \ldots, \varphi_k, \psi_1, \psi_2, \ldots, \psi_m$ be real-valued functions defined on a Banach space X . Let C be a nonempty subset of X . In this section we shall be concerned with the following problem

$$
(P) \qquad \begin{cases} \min_{1 \le i \le k} \varphi_i(x) \to \min, \\ \text{s.t.} \\ \min_{1 \le j \le m} \psi_j(x) \le 0, \\ x \in C, \end{cases}
$$

Denote by M the feasible set of Problem (P) .

Recall that Clarke's tangent cone to C at x_0 is defined as follows

$$
T_C(x_0) := \{ v \in X : d_C^0(x_0; v) = 0 \},
$$

where $d_C^0(x_0; v)$ denotes Clarke's directional derivative of the distance function $d_C(.)$ at x_0 with respect to the direction v.

Clarke's normal cone to C at x_0 is defined by

$$
N_C(x_0) := \{ \xi \in X^* : \langle \xi, v \rangle \le 0, \ \forall v \in T_C(x_0) \},
$$

where X^* is the set of all continuous linear functionals defined on X.

We begin by establishing a necessary condition of the Kuhn-Tucker type for Problem (P).

Theorem 3. Let x_0 be a local minimum of Problem (P) . Assume that the set C is closed, and the functions $\varphi_1, \varphi_2, \ldots, \varphi_k, \psi_1, \psi_2, \ldots, \psi_m$ are locally Lipschitz at x_0 . Then, there exist numbers $\overline{\gamma} \geq 0$, $\overline{\alpha} \geq 0$, $\overline{\lambda_i} \geq 0$
 $(i \in I_1(x_0))$ with $\sum \overline{\lambda_i} = 1$ and $\overline{\mu_j} \geq 0$ $(j \in I_2(x_0))$ with $\sum \overline{\mu_j} =$ $i \in I_1(x_0)$ Then, there exist numbers $\gamma \geq 0$, $\alpha \geq 0$,
 $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \geq 0$ $(j \in I_2(x_0))$ with \sum $j \in I_2(x_0)$ $\bar{\mu_j} =$ 1, $\bar{\gamma}$ and $\bar{\alpha}$ are not both equal to zero such that

(7)
$$
0 \in \bar{\gamma} \sum_{i \in I_1(x_0)} \bar{\lambda}_i \partial \varphi_i(x_0) + \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \partial \psi_j(x_0) + N_C(x_0),
$$

(8)
$$
\bar{\alpha} \min_{1 \leq j \leq m} \psi_j(x_0) = 0,
$$

where

$$
I_1(x_0) := \Big\{ i \in \{1, 2, \dots, k\} : \ \varphi_i(x_0) = \min_{1 \le j \le k} \varphi_j(x_0) \Big\},
$$

$$
I_2(x_0) := \Big\{ j \in \{1, 2, \dots, m\} : \ \psi_j(x_0) = \max_{1 \le \ell \le m} \psi_\ell(x_0) \Big\}.
$$

Proof. By virtue of Theorem 6.1.1 of [2] there exist numbers $\bar{\gamma} \geq 0$, $\bar{\alpha} \geq 0$, not both zero, such that

(9)
$$
0 \in \bar{\gamma}\partial \Big(\min_{1 \leq i \leq k} \varphi_i \Big) (x_0) + \bar{\alpha}\partial \Big(\min_{1 \leq j \leq m} \psi_j \Big) (x_0) + N_C(x_0),
$$

$$
\bar{\alpha} \min_{1 \le j \le m} \psi_j(x_0) = 0.
$$

It is clear that

$$
I_1(x_0) := \Big\{ i \in \{1, 2, \dots, k\} : -\varphi_i(x_0) = \max_{1 \le j \le k} (-\varphi_j(x_0)) \Big\},
$$

$$
I_2(x_0) := \Big\{ j \in \{1, 2, \dots, m\} : -\psi_j(x_0) = \max_{1 \le \ell \le m} (-\psi_\ell(x_0)) \Big\}.
$$

Taking account of Proposition 2.3.12 of [2] one gets

$$
\partial \Big(\min_{1 \le i \le k} \varphi_i \Big)(x_0) = \partial \Big(- \max_{1 \le i \le k} (-\varphi_i))(x_0)
$$

=
$$
-\partial \Big(\max_{1 \le i \le k} (-\varphi_i))(x_0)
$$

$$
\subset -c \partial \{ \partial (-\varphi_i)(x_0) : i \in I_1(x_0) \}
$$

=
$$
c \partial \{ \partial (\varphi_i)(x_0) : i \in I_1(x_0) \},
$$

where co indicates the convex hull.

Hence

(10)
$$
\partial \Big(\min_{1 \le i \le k} \varphi_i \Big) (x_0) \subset \Big\{ \sum_{i \in I_1(x_0)} \lambda_i \partial \varphi_i(x_0), \lambda_i \ge 0, \sum_{i \in I_1(x_0)} \lambda_i = 1 \Big\}
$$

By an argument similar to the previous one, we get

$$
(11) \quad \partial \Big(\min_{1 \le j \le m} \psi_j \Big)(x_0) \subset \Big\{ \sum_{j \in I_2(x_0)} \mu_j \partial \psi_j(x_0), \mu_j \ge 0, \sum_{j \in I_2(x_0)} \mu_j = 1 \Big\}
$$

Combining (9), (10), and (11) yields the existence of numbers $\bar{\lambda}_i \ge 0$ ($i \in I_1(x_0)$) with $\sum \bar{\lambda}_i = 1$ and $\bar{\mu}_j \ge 0$ ($j \in I_2(x_0)$) with $\sum \bar{\mu}_j = 1$ $i \in I_1(x_0)$ and (11) yields the existence of numbers λ_i
 $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \ge 0$ $(j \in I_2(x_0))$ with \sum $j \in I_2(x_0)$ $\bar{\mu_j}=1$ such that

$$
0 \in \bar{\gamma} \sum_{i \in I_1(x_0)} \bar{\lambda}_i \partial \varphi_i(x_0) + \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \partial \psi_j(x_0) + N_C(x_0).
$$

The proof is now complete. \Box

Remark 1. Let us consider the following problem

$$
(P_1) \qquad \begin{cases} \min_{1 \le i \le k} \varphi_i(x) \to \max, \\ \text{s.t.} \\ \min_{1 \le j \le m} \psi_j(x) \ge 0, \\ x \in C, \end{cases}
$$

where $\varphi_1, \ldots, \varphi_k, \psi_1, \ldots, \psi_m, C$ are as in Problem (P) .

Under the hypotheses stated in Theorem 3, we obtain the following Kuhn-Tucker necessary conditions:

(12)
$$
0 \in -\bar{\gamma} \sum_{i \in I_1(x_0)} \bar{\lambda}_i \partial \varphi_i(x_0) - \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \partial \psi_j(x_0) + N_C(x_0),
$$

(13)
$$
\bar{\alpha} \min_{1 \leq j \leq m} \psi_j(x_0) = 0.
$$

Remark 2. If a condition of Slater type or a condition of Mangasarian-Fromowitz type is satisfied, then we get $\bar{\gamma} > 0$ in (7) and (12), and we may assume that $\bar{\gamma} = 1$.

Now we shall deal with a sufficient condition for optimality.

Theorem 4. Let x_0 be a feasible point of Problem (P) . Let the functions $\varphi_1, \ldots, \varphi_k, \psi_1, \ldots, \psi_m$ be locally Lipschitz and regular at x_0 ; the functions $\min_{1 \leq i \leq k} \varphi_i(x)$ and $\min_{1 \leq j \leq m} \psi_j(x)$ are regular at x_0 . Assume that there are a neighbourhood V of x_0 and a function $\omega : M \times M \to T_C(x_0)$ such that the functions $\varphi_1, \ldots, \varphi_k, \psi_1, \ldots, \psi_m$ are invex at x_0 on $M \cap V$, with respect to the function ω . Suppose, furthermore, that there exist numbers $\bar{\alpha} \geq 0$, $\bar{\lambda}_i \geq 0$ ($i \in I_1(x_0)$) with \sum $i \in I_1(x_0)$ $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \geq 0$ $(j \in I_2(x_0))$ with $\overline{ }$ $\sum \bar{\mu}_j = 1$ such that

$$
j \in \overline{I_2}(x_0)
$$

(14)
$$
0 \in \sum_{i \in I_1(x_0)} \bar{\lambda}_i \partial \varphi_i(x_0) + \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \partial \psi_j(x_0) + N_C(x_0),
$$

(15)
$$
\bar{\alpha} \min_{1 \leq j \leq m} \psi_j(x_0) = 0,
$$

Then, x_0 is a local minimum of Problem (P) .

Proof. It follows from the condition (14) that there are $\bar{\zeta}_i \in \partial \varphi_i(x_0)$ $(i \in I_1(x_0)$, $\bar{\eta}_j \in \partial \psi_j(x_0)$ $(j \in I_2(x_0)$, $\bar{s} \in N_C(x_0)$, such that

(16)
$$
\sum_{i \in I_1(x_0)} \bar{\lambda}_i \bar{\zeta}_i + \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \bar{\eta}_j + \bar{s} = 0.
$$

We shall prove that for every $x \in M \cap V$,

$$
\min_{1 \le i \le k} \varphi_i(x) - \min_{1 \le i \le k} \varphi_i(x_0) \ge 0.
$$

According to Theorem 1, the functions $\min_{1 \leq i \leq k} \varphi_i(x)$ and $\min_{1 \leq j \leq m} \psi_i(x_0)$ are invex at x_0 with respect to $\omega(x, x_0)$. Hence, taking x to be a feasible point of Problem (P) and $x \in V$, it follows from (15) that

$$
\min_{1 \le i \le k} \varphi_i(x) - \min_{1 \le i \le k} \varphi_i(x_0)
$$
\n
$$
\ge \left[\min_{1 \le i \le k} \varphi_i(x) + \bar{\alpha} \min_{1 \le j \le m} \psi_j(x) \right] - \left[\min_{1 \le i \le k} \varphi_i(x_0) + \bar{\alpha} \min_{1 \le j \le m} \psi_j(x_0) \right]
$$
\n
$$
\ge \left(\min_{1 \le i \le k} \varphi_i \right)' (x_0; \omega(x, x_0)) + \bar{\alpha} \left(\min_{1 \le j \le m} \psi_j \right)' (x_0; \omega(x, x_0)).
$$

By the regularity assumption we have

for

$$
\min_{1 \le i \le k} \varphi_i(x) - \min_{1 \le i \le k} \varphi_i(x_0) \ge \langle \zeta, \omega(x, x_0) \rangle + \bar{\alpha} \langle \eta, \omega(x, x_0) \rangle
$$

all $\zeta \in \partial \Big(\min_{1 \le i \le k} \varphi_i \Big)(x_0)$ and $\eta \in \partial \Big(\min_{1 \le j \le m} \psi_j \Big)(x_0)$. Taking

$$
\bar{\zeta} = \sum_{i \in I_1(x_0)} \bar{\lambda}_i \bar{\zeta}_i \in \partial \Big(\min_{1 \le i \le k} \varphi_i \Big) (x_0),
$$

$$
\bar{\eta} = \sum_{j \in I_2(x_0)} \bar{\mu}_j \bar{\eta}_j \in \partial \Big(\min_{1 \le j \le m} \psi_j \Big) (x_0)
$$

and $\bar{s} \in N_C(x_0)$, by virtue of (16) one gets

$$
\min_{1 \leq i \leq k} \varphi_i(x) - \min_{1 \leq i \leq k} \varphi_i(x_0)
$$
\n
$$
\geq \sum_{i \in I_1(x_0)} \bar{\lambda}_i \langle \bar{\zeta}_i, \omega(x, x_0) \rangle + \sum_{j \in I_2(x_0)} \bar{\mu}_j \langle \bar{\eta}_j, \omega(x, x_0) \rangle + \langle s, \omega(x, x_0) \rangle
$$
\n= 0.

This completes the proof. \square

In the case of convex functions we get the following

Theorem 5. Let x_0 be a feasible point of Problem (P) and C be a closed convex subset of X. Let the functions $\varphi_1, \varphi_2, \ldots, \varphi_k, \psi_1, \psi_2, \ldots, \psi_m$ be convex and locally Lipschitz at x_0 , and the functions $\min_{1 \le i \le k} \varphi_i(x)$ and $\min_{1 \leq j \leq m} \psi_j(x)$ are regular at x_0 . Assume that there are numbers $\bar{\alpha} \geq 0$, $\overline{\lambda}_i \geq 0$ $(i \in I_1(x_0))$ with \sum $i \in I_1(x_0)$ $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \geq 0$ $(j \in I_2(x_0))$ with $\overline{ }$ $j \in I_2(x_0)$ $\bar{\mu}_j = 1$ such that (14) and (15) are fulfilled. Then x_0 is a local minimum of Problem (P).

Proof. It follows from proposition 2.2.7 of [2] that the functions $\varphi_1, \varphi_2, \ldots$, $\varphi_k, \psi_1, \psi_2, \ldots, \psi_m$ are regular at x_0 . Moreover, these functions are invex with respect to the same function $\omega(x, x_0) = x - x_0$. Because C is a convex set, the normal cone $N_C(x₀)$ coincides with the one in the sense of convex analysis: ª

$$
N_C(x_0) = \{ \zeta \in X : \langle \zeta, x - x_0 \rangle 0, \ \forall x \in C \}.
$$

By an argument analogous to that used for the proof of Theorem 4, the conclusion follows. \square

Now we turn back to Problem (P_1) and establish the following sufficient condition.

Theorem 6. Let x_0 be a feasible point of Problem (P_1) . Let the functions $-\varphi_1, -\varphi_2, \ldots, -\varphi_k, -\psi_1, -\psi_2, \ldots, -\psi_m$ be locally Lipschitz and regular at x_0 . Assume that there are a neighbourhood V of x_0 and a function $\omega: M \times M \to T_C(x_0)$ such that the functions $-\varphi_1, -\varphi_2, \ldots, -\varphi_k, -\psi_1$, $-\psi_2, \ldots, -\psi_m$ are invex at x_0 on $M \cap V$ with respect to the same function ω . Suppose, in addition, that there exist numbers $\bar{\alpha} \geq 0$, $\bar{\lambda}_i \geq 0$ (i \in $I_1(x_0)$) with \sum $i \in I_1(x_0)$ *ition, that there exist numbers* $\alpha \geq 0$, $\lambda_i =$
 $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \geq 0$ $(j \in I_2(x_0))$ with \sum $j \in I_2(x_0)$ $\bar{\mu_j}=1$

such that

(17)
$$
0 \in -\sum_{i \in I_1(x_0)} \overline{\lambda}_i \partial \varphi_i(x_0) - \overline{\alpha} \sum_{j \in I_2(x_0)} \overline{\mu}_j \partial \psi_j(x_0) + N_C(x_0),
$$

(18)
$$
\bar{\alpha} \min_{1 \leq j \leq m} \psi_j(x_0) = 0,
$$

Then x_0 is a local maximum of Problem (P_1) .

Proof. As in the proof of Theorem 4 it follows that there are $\bar{\zeta}_i \in \partial \varphi_i(x_0)$ $(i \in I_1(x_0)), \bar{\eta}_j \in \partial \psi_j(x_0)$ $(j \in I_2(x_0))$ and $\bar{s} \in N_C(x_0)$, such that

(19)
$$
- \sum_{i \in I_1(x_0)} \bar{\lambda}_i \bar{\zeta}_i - \bar{\alpha} \sum_{j \in I_2(x_0)} \bar{\mu}_j \bar{\eta}_j + \bar{s} = 0.
$$

To prove that x_0 is a local maximum of Problem (P_1) we shall prove that for every $x \in M \cap V$,

$$
\max_{1 \le i \le k} (-\varphi_i)(x) - \max_{1 \le i \le k} (-\varphi_i)(x_0) \ge 0,
$$

that is the function $\max_{1 \le i \le k} (-\varphi_i)(x)$ reaches a local minimum at x_0 . Taking $x \in M \cap V$, it follows from (18) that

(20)
$$
\max_{1 \le i \le k} (-\varphi_i)(x) - \max_{1 \le i \le k} (-\varphi_i)(x_0)
$$

$$
\ge \left[\max_{1 \le i \le k} (-\varphi_i)(x) - \bar{\alpha} \min_{1 \le j \le m} \psi_j(x) \right]
$$

$$
- \left[\max_{1 \le i \le k} (-\varphi_i)(x_0) - \bar{\alpha} \min_{1 \le j \le m} \psi_j(x_0) \right]
$$

$$
= \left[\max_{1 \le i \le k} (-\varphi_i)(x) + \bar{\alpha} \max_{1 \le j \le m} (-\psi_j)(x) \right]
$$

$$
- \left[\max_{1 \le i \le k} (-\varphi_i)(x_0) + \bar{\alpha} \max_{1 \le j \le m} (-\psi_j)(x_0) \right]
$$

Since the functions $-\varphi_1, -\varphi_2, \ldots, -\varphi_k, -\psi_1, -\psi_2, \ldots, -\psi_m$ are regular at x_0 , it follows from Proposition 2.3.12 of [2] that the functions $\max_{1 \leq i \leq k} (-\varphi_i)$ and $\max_{1 \leq j \leq m} (-\psi_j)$ are regular at x_0 , that is

$$
\left(\max_{1\leq i\leq k}(-\varphi_i)\right)'(x_0;.) = \left(\max_{1\leq i\leq k}(-\varphi_i)\right)^0(x_0;.)
$$

$$
\left(\max_{1\leq j\leq m}(-\psi_j)\right)'(x_0;.) = \left(\max_{1\leq j\leq m}(-\psi_j)\right)^0(x_0;.).
$$

Taking account of Theorem 2 we see that the functions $\max_{1 \leq i \leq k} (-\varphi_i)(x)$ and $\max_{1 \leq j \leq m} (-\psi_j)(x)$ are invex at x_0 on $M \cap V$ with respect to the function $\omega(x, x_0)$. From (20) it follows that

(21)
$$
\max_{1 \leq i \leq k} (-\varphi_i)(x) - \max_{1 \leq i \leq k} (-\varphi_i)(x_0) \geq \langle \zeta, \omega(x, x_0) \rangle + \bar{\alpha} \langle \eta, \omega(x, x_0) \rangle
$$

$$
\left(\forall \zeta \in \partial \Big(\max_{1 \leq i \leq k} (-\varphi_i)\Big)(x_0), \ \forall \eta \in \partial \Big(\max_{1 \leq j \leq m} (-\psi_j)\Big)(x_0)\right)
$$

For $\bar{\zeta}_i \in \partial \varphi_i(x_0)$ $(i \in I_1(x_0))$ and $\bar{\eta}_j \in \partial \psi_j(x_0)$ $(j \in I_2(x_0))$, observe that $\overline{}$ \overline{a} ´

$$
\sum_{i \in I_1(x_0)} \bar{\lambda}_i \bar{\zeta}_i \in \partial \Big(\min_{1 \le i \le k} \varphi_i \Big) (x_0)
$$

$$
\sum_{j \in I_2(x_0)} \bar{\mu}_j \bar{\eta}_j \in \partial \Big(\min_{1 \le j \le m} \psi_j \Big) (x_0).
$$

Then we have

(22)
$$
-\sum_{i\in I_1(x_0)} \bar{\lambda}_i \bar{\zeta}_i \in \partial \Big(\max_{1\leq i\leq k} (-\varphi_i))(x_0),
$$

(23)
$$
-\sum_{j\in I_2(x_0)} \bar{\mu}_j \bar{\eta}_j \in \partial \Big(\max_{1\leq j\leq m} (-\psi_j) \Big)(x_0).
$$

Note that for every $x \in M \cap V$, since $\omega(x, x_0) \in T_C(x_0)$ and $\overline{s} \in N_C(x_0)$,

(24)
$$
\langle \bar{s}, \omega(x, x_0) \rangle \leq 0.
$$

Combining (19), (21) - (24) yields that for every $x \in M \cap V$,

$$
\max_{1 \leq i \leq k} (-\varphi_i)(x) - \max_{1 \leq i \leq k} (-\varphi_i)(x_0)
$$
\n
$$
\geq \left\langle -\sum_{i \in I_2(x_0)} \overline{\lambda}_i \overline{\zeta}_i, \omega(x, x_0) \right\rangle + \overline{\alpha} \left\langle -\sum_{i \in I_2(x_0)} \overline{\mu}_j \overline{\eta}_j, \omega(x, x_0) \right\rangle
$$
\n
$$
\geq -\sum_{i \in I_1(x_0)} \overline{\lambda}_i \left\langle \overline{\zeta}_i, \omega(x, x_0) \right\rangle - \overline{\alpha} \sum_{j \in I_2(x_0)} \overline{\mu}_j \left\langle \overline{\eta}_j, \omega(x, x_0) \right\rangle + \left\langle \overline{s}, \omega(x, x_0) \right\rangle
$$
\n
$$
= 0.
$$

The proof is now complete. \square

Remark 3. From Theorem 6 we can see that if the functions $\varphi_1, \varphi_2, \ldots,$ $\varphi_k, \psi_1, \psi_2, \dots, \psi_m$ are convex and locally Lipschitz at a feasible point x_0 of (P_1) , C is a closed convex set, and there exist $\bar{\alpha} \geq 0$, $\bar{\lambda}_i \geq 0$ $(i \in I_1(x_0))$
with $\sum \bar{\lambda}_i = 1$ and $\bar{\mu}_i \geq 0$ $(j \in I_2(x_0))$ with $\sum \bar{\mu}_i = 1$ such that $i \in I_1(x_0)$ a closed convex set, and there exist $\alpha \geq 0$,
 $\bar{\lambda}_i = 1$ and $\bar{\mu}_j \geq 0$ $(j \in I_2(x_0))$ with \sum $j \in I_2(x_0)$ $\bar{\mu_j} = 1$ such that (17) and (18) hold, then x_0 is a maximum of Problem (P_1) .

ACKNOWLEDGEMENT

The authors thank the referee for his valuable comments.

REFERENCES

- 1. A. Ben-Israel and B. Mond, What is invexity ?, J. Austral. Math. Soc. Series B 28 (1986), 1-9.
- 2. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- 3. B. D. Craven, Invex function and constrained local minima, Bull. Austral. Math. Soc. 24 (1981), 357-366.
- 4. B. D. Craven and B. M. Glover, Invex functions and duality, J. Austral. Math. Soc. Series A 39 (1985), 1-20.
- 5. B. D. Craven and D. V. Luu, Lagrangian conditions for a nonsmooth vector-valued minimax, J. Austral. Math. Soc. Series A 64 (1998), 1-14.
- 6. B. D. Craven and D. V. Luu, Constrained minimax for a vector-valued function, Optimization 31 (1994), 199 -208.
- 7. B. D. Craven, D. V. Luu and B. M. Glover, Strengthened invex and perturbations, Math. Methods of Operations Research 43 (1996), 319 -336.
- 8 . B. D. Craven and D. V. Luu, Optimization with set-functions described by functions, Optimization 42 (1997), 39-50.
- 9. V. F. Demyanov and V. N. Malozemov, Introduction to Minimax, Nauka, Moskva, 1972.
- 10. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550.
- 11. V. Jeyakumar, Strong and weak invexity in mathematical programming, Methods of Operations Research 55 (1985), 109-125.
- 12. R. Mifflin, Semismooth and semiconvex functions in constrained Optimization, SIAM J. Control Optim. 15 (1977), 959-972.
- 13. T. W. Reiland, Generalized invexity for nonsmooth vector-valued mappings, Numer. Funct. Anal. and Optimiz. 10 (1989), 1191-1202.
- 14. T. W. Reiland, Nonsmooth invexity, Bull. Austral. Math. Soc. 42 (1990), 437-446.

¹ HANOI INSTITUTE OF MATHEMATICS

2 Institute of Cryptographic Technology, Hanoi