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ON THE EXISTENCE OF BOUNDED SOLUTIONS
FOR LOTKA-VOLTERRA EQUATIONS

NGUYEN HUU DU

Abstract. This article deals with an extension of Ahmad’s results in
studying the existence and uniqueness of a solution bounded above and be-
low by positive constants by mean of weakening the conditions imposed on
the coefficients of competing species equations of random Lotka-Volterra
type.

1. Introduction

In this article we are concerned with an extension of Ahmad’s results
in studying the existence and uniqueness of a solution bounded above and
below by positive constants by mean of weakening the conditions imposed
on the coefficients of competing species equations. The model to be studied
is the random Lotka-Volterra system

(1.1)
{

ẋ = x
(
a(t)− b(t)x− c(t)y

)

ẏ = y
(
d(t)− e(t)x− f(t)y

)
,

where a, b, c, d, e, f are random processes with continuous trajectories.
We suppose that a, b, c, d, e, f are bounded above and below by positive
random variables. This is a model of two competing species whose quan-
tities at time t are x(t) and y(t), respectively, in a random environment.
The processes a and d are the respective intrinsic growth rates; b and f
measure the respective intraspecific competition within species x and y
and the processes c, e measure the interspecific competitions between two
species. The details of the ecological significance of such a system are
discussed in [Go].

It is known that for system (1.1) the quadrant plane

R2
+ = {(u, v) : 0 < u < ∞; 0 < v < ∞}
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is invariant, i.e., if col(x(t), y(t)) is a solution of (1.1) with x(t0) > 0,
y(t0) > 0 for some t0 ∈ R then x(t) > 0, y(t) > 0 for any t ∈ (−∞,∞).

Let gM = sup
−∞<t<∞

g(t); gL = inf
−∞<t<∞

g(t) for any function g(t). For

the case where the coefficients a, b, c, d, e, f are deterministic continuous
functions, Ahmad in [Ah2] has shown that under the condition

(1.2)
aL

cM
>

dM

fL
;

dL

eM
>

aM

bL
; aL, fL, dL, bL > 0,

system (1.1) has a unique solution defined on (−∞,∞) which is bounded
above and below by positive constants. Furthermore, he has shown that
if the coefficients are almost periodic functions then this unique solution
is also almost periodic.

We note that every solution starting from t0 is strictly positive (in
the sense that it is bounded above and bellow by positive constants) on
[t0, +∞) for any t0 ∈ R (see Proposition 3). Therefore, the existence and
uniqueness of the strictly positive solution of system (1.1) is determined
by the behavior of the coefficients at −∞. Thus, condition (1.2) seems
to be strong for it is imposed on the coefficients for the whole interval
(−∞, +∞).

Following this suggestion, we want to weaken the Ahmad’s condition
by supposing that (1.2) is satisfied only at the infinity (see conditions (2.1)
and (2.2) bellow). In this case, because condition (1.2) is not satisfied for
all t ∈ R, we have to improve the proof in order to obtain the same result.
Furthermore, our proof still works in the case where the coefficients are
random or the competing system is described by Ito equations.

The article is organized as follows. In Section 2, we establish a new
condition under which the existence of bounded above and below solution
has been proved. In Section 3 we transfer the results to the case where
the coefficients are stationary processes.

2. Main results

As mentioned in the introduction, we now realize the idea that condi-
tion (1.2) is satisfied at the infinity.

Hypotheses

(i) There exist two random variables ξ, η such that

P{ξ > 0} = P{η > 0} = 1,

P{ξ < g < η} = 1 for any g := a, b, c, d, e, f.
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(ii) The following conditions are satisfied:

lim sup
|t|→∞

a(t)
b(t)

< lim inf
|t|→∞

d(t)
e(t)

a.s.,(2.1)

lim sup
|t|→∞

d(t)
f(t)

< lim inf
|t|→∞

a(t)
c(t)

a.s.(2.2)

By virtue of conditions (2.1) and (2.2), we can choose two random
variables k1 and k2 satisfying

lim sup
|t|→∞

a(t)
b(t)

< k1 < lim inf
|t|→∞

d(t)
e(t)

,

lim sup
|t|→∞

d(t)
f(t)

< k2 < lim inf
|t|→∞

a(t)
c(t)

.

Therefore, there exists a random variable T > 0 a.s. such that

(2.3)
a(t)
b(t)

< k1 <
d(t)
e(t)

;
d(t)
f(t)

< k2 <
a(t)
c(t)

a.s.

for any t such that |t| > T .
It is obvious that if Ahmad’s condition (1.2) holds then conditions

(2.1) and (2.2) are satisfied. But it is easy to give an example showing
that conditions (2.1) and (2.2) are weaker than (1.2).

Example. Let a = 2 + cos t, b = 2 + cos t, d =
3
2
(2 + cos t), e = 2 + cos t

and c, f be chosen conveniently. Then

lim sup
|t|→∞

a(t)
b(t)

= 1 < lim inf
|t|→∞

d(t)
e(t)

= 3/2,

but
aM

bL
= 3 > 1/2 =

dL

eM
· .

Thus Ahmad’s condition (1.2) is not true.
From condition (2.3) we can take an δ > 0 such that

δ < min{k1, k2},
a(t)− b(t) · δ − c(t) · k2 > 0,(2.4)

d(t)− e(t) · k1 − f(t) · δ > 0,
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for any t : |t| > T .

Proposition 1. (The comparison of solutions of (1.1), see [Fa, Lemma
4.4.1]) If col(x1(t), y1(t)) and col(x2(t), y2(t)) are two solutions of (1.1)
then for any t0 ∈ R,
a) If x1(t0) < x2(t0); y1(t0) > y2(t0) then x1(t) < x2(t); y1(t) > y2(t) for

all t ≥ t0;
b) If x1(t0) < x2(t0); y1(t0) < y2(t0) then x1(t) < x2(t); y1(t) < y2(t) for

all t ≤ t0.

Proof. The item a) can be referred to Lemma 4.4.1 of [Fa]. We only have
to prove b). By the continuity of the solutions, there is an t ∈ R such that
x1(t) < x2(t); y1(t) < y2(t) for all t < t < t0 and either x1(t) = x2(t) or
y1(t) = y2(t). Suppose that x1(t) = x2(t). By simple calculation we get

ẋ1(t)− ẋ2(t) = −x1(t) · c(t) ·
(
y1(t)− y2(t)) > 0.

On the other hand, from x1(t) < x2(t); x1(t) = x2(t) it follows that ẋ1(t)−
ẋ2(t) ≤ 0. This is a contradiction. So x1(t) < x2(t); y1(t) < y2(t) for all
t ≤ t0.

Let t0 ∈ R arbitrary. If we consider equation (1.1) for t > t0 and every
solution started from x(t0) at t0, then we call it by forward equation. In
the case when the solution starts at t0 but the system is considered only
for t < t0 we call it by backward equation. Using the time transformation
t by −t, the backward equation turns into the following forward one:

(2.5)
{

ẋ = x
(−a(−t) + b(−t)x + c(−t)y

)
,

ẏ = y
(−d(−t) + e(−t)x + f(−t)y

)
.

t ≥ −t0.

We show that under conditions (2.1) and (2.2), every solution of forward
equation (1.1) is strictly positive. We need the following lemma:

Lemma 2. Let G(t) and F (t) be two differentiable functions defined on
(0,∞) such that lim

t→∞
G(t) = lim

t→∞
F (t) = +∞ then

lim sup
t→∞

G(t)
F (t)

≤ lim sup
t→∞

G′(t)
F ′(t)

; lim inf
t→∞

G(t)
F (t)

≥ lim inf
t→∞

G′(t)
F ′(t)

.

Proof. By the Cauchy theorem for differential functions, for any t1, t2 > 0
there is an θ ∈ (t1, t2) such that

G′(θ)
F ′(θ)

=
G(t1)−G(t2)
F (t1)− F (t2)

=
G(t2)
F (t2)

×
1− G(t1)

G(t2)

1− G(t1)
F (t2)

·
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Letting t1 and t2 → ∞ such that lim
G(t1)
G(t2)

= lim
F (t1)
F (t2)

= 0 we get the

result.

Proposition 3. For the forward equation (1.1) with T > 0 the domain

S = {δ ≤ x ≤ k1; δ ≤ y ≤ k2}
is an attractor, i.e., for any solution col(x(t), y(t)), there exists a random
variable t0 > T such that col(x(t), y(t)) ∈ S ∀t ≥ t0.

Proof. From the inequality

ẋ = x(a− bx− cy) < x(a− bx)

it follows that

x(t) ≤ x(T ). exp{A(t)}
1 + x(T )

t∫
T

exp{A(s)}b(s) ds

; A(t) =

t∫

T

a(s) ds.

Since a(t) and b(t) are bounded below by positive random variables,

lim
t→∞

A(t) = lim
t→∞

t∫

T

exp{A(s)}b(s)ds = ∞.

Therefore, by Lemma 2 we have

lim sup
t→∞

x(t) ≤ lim sup
t→∞

a(t)
b(t)

< k1.

Thus, there exists t1 > T such that

x(t) < k1 for all t ≥ t1 a.s.

Similarly, there is an t2 > T such that

y(t) < k2 for all t ≥ t2 a.s.
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On the other hand, for any t ≥ t2

ẋ(t) = x(a− bx− cy) ≥ x(a− bx− c.k2)

= x
(
h(t)− b(t)x

)
,

where h(t) = a(t)− c(t) ·k2 and h(t) is bounded below by positive random
variable. Hence

x(t) ≥ x(t2). exp{H(t)}
1 + x(t2)

t∫
t1

exp{H(s)}b(s) ds

; H(t) =

t∫

t2

h(s) ds.

By Lemma 2 and by (2.4) it is easy to see that

lim inf
t→∞

x(t) ≥ lim inf
t→∞

h(t)
b(t)

> δ.

Thus, there exists an t3 > t2 such that

x(t) ≥ δ; ∀t ≥ t3.

By the same argument we can prove that there is an t4 such that

y(t) ≥ δ; ∀t ≥ t4.

Taking t0 = max{t1, t2, t3, t4} we have col(x(t), y(t)) ∈ S for any t ≥ t0.
Proposition 3 is proved.

Proposition 4. If there exists an t0 ≤ −T such that x(t0) = k1 or
y(t0) = k2 then the solution col(x(t), y(t)) of equation (1.1) is exploded,
i.e., this solution can not be extended on (−∞,−T ).

Proof. For the forward equation (2.5), from the inequalities

ẋ = x
(−a(−t) + b(−t)x + c(−t)y

) ≥ x
(−a(−t) + b(−t)x

)

ẏ = y
(−d(−t) + e(−t)x + f(−t)y

) ≥ y
(−d(−t) + e(−t)x

)
, t ≥ T,

it follows that

x(t) >
x(−t0) · exp{A(t)}

1− x(−t0)
t∫

−t0

exp{A(s)}b(−s)ds

, A(t) = −
t∫

−t0

a(−s)ds,

y(t) >
y(−t0) · exp{D(t)}

1− y(−t0)
t∫

−t0

exp{D(s)}f(−s)ds

, D(t) =

t∫

−t0

d(−s)ds; t ≥ −t0.
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Since

∞∫

−t0

exp{A(s)}b(−s)ds >
1
k1
·
∞∫

−t0

exp{A(s)}a(−s)ds =
1
k1

,

there exists β1 > −t0 such that

β1∫

−t0

exp{A(s)}b(−s)ds = 1.

Therefore, if x(−t0) = k1 we have

lim
t→β1

x(t) = +∞.

Similarly, from

∞∫

−t0

exp{D(s)}f(−s)ds >
1
k2
·
∞∫

−t0

exp{D(s)}d(−s)ds =
1
k2

,

it follows that there is β2 > t2 such that

β2∫

−t0

exp{D(s)}f(−s)ds = 1.

Hence, if y(t0) = k2 then

lim
t→β2

y(t) = +∞.

Proposition 5. Suppose that y(t) ≤ k2 for all t ≤ −T (respectively x(t) ≤
k1 for all t ≤ −T ) and the solution col(x(t), y(t)) is defined on (−∞,∞).
If there is an t0 ≤ −T such that x(t0) ≤ δ (respectively, y(t0) ≤ δ) then
lim

t→∞
x(t) = 0 (respectively, lim

t→∞
y(t) = 0).
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Proof. We consider once more forward equation (2.5). Let col(x(t), y(t))
be a solution of (2.5) such that y(t) ≤ k2 for all t ≥ T and x(t0) ≤ δ for
an t0 ≥ T . From inequality (2.3) we get

ẋ = x
(−a(−t) + b(−t)x + c(−t)y

)

≤ x
(−a(−t) + b(−t)x + c(−t) · k2

)

= x(−h(t) + b(−t)x),

where h(t) = a(−t) − c(−t) · k2 is bounded above and below by positive
random variables. Hence

x(t) ≤ x(t0) · exp{−H(t)}
1−

t∫
t0

exp{−H(s)}b(−s)ds

, H(t) =

t∫

t0

h(s)ds.

On the other hand, by (2.4)

∞∫

t0

exp{−H(s)}b(−s)ds <
1
δ
·

t∫

t0

exp{−H(s)}h(s) ds =
1
δ
·

Therefore, we get lim
t→∞

x(t) = 0. Similarly we can prove the second case.

Thus, Propositions 4 and 5 tell us that if there exists a bounded
above and below solution defined on (−∞,∞) then it is necessarily that
col(x(t), y(t)) ∈ S for any t ∈ (−∞,−T ] ∪ [T,∞). We now pass to the
proof of the existence.

Proposition 6. If t0 < −T and col(x1(t), y1(t)) and col(x2(t), y2(t)) are
two solutions of (1.1) such that

col(x1(t0), y1(t0)) = (δ, k2),

col(x2(t0), y2(t0)) = (k1, δ),

then
δ ≤ x1(t) ≤ x2(t) ≤ k1, δ ≤ y2(t) ≤ y1(t) ≤ k2,

for t0 < t ≤ −T .

Proof. See [Ah2, Lemma 1]
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Proposition 7. Under the conditions (2.1) and (2.2), Equation (1.1)
has two solutions, namely col(x∗(t), y∗(t)) and col(x∗(t), y∗(t)), which are
bounded above and below on (−∞,+∞) by two positive random variables
ε, ∆, i.e.,

(2.6) ε ≤ x∗ ≤ x∗ ≤ ∆, ε ≤ y∗ ≤ y∗ ≤ ∆ a.s.

Proof. The proof of the theorem is somewhat similar to that of Lemma 1
in [Ah2] with some slight improvements of the technique. For every n ∈ N
we denote by col(x∗n(t), y∗n(t)) and col(x∗n(t), y∗n(t)) the solutions of (1.1)
satisfying the initial conditions

x∗n(−n) = y∗n(−n) = δ; x∗n(−n) = k1; y∗n(−n) = k2; t ≥ −n.

By Proposition 6 we have

δ ≤ x∗n ≤ x∗n ≤ k1, δ ≤ y∗n ≤ y∗n ≤ k2, −n ≤ t ≤ −T.

Hence

δ = x∗n(−n) ≤ x∗(n+1)(−n) ≤ x∗n+1(−n) ≤ x∗n(−n) = k1,

δ = y∗n(−n) ≤ y∗n+1(−n) ≤ y∗(n+1)(−n) ≤ y∗n(−n) = k2.

Therefore, by Proposition 1 and Proposition 6

δ ≤ x∗n(t) ≤ x∗(n+1)(t) ≤ x∗n+1(t) ≤ x∗n(t) ≤ k1,

δ ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗(n+1)(t) ≤ y∗n(t) ≤ k2

for any t ∈ [−n,−T ]. In particular, the sequences of random variables
(x∗n(−T )) and (y∗n(−T )) are increasing in n and the sequences (x∗n(−T ))
and (y∗n(−T )) are decreasing in n. Thus, there almost surely exist the
limits

lim
n→∞

x∗n(−T ) = ξ∗; lim
n→∞

x∗n(−T ) = ξ∗;

lim
n→∞

y∗n(−T ) = η∗; lim
n→∞

y∗n(−T ) = η∗;

Moreover,
ξ∗ ≤ ξ∗; η∗ ≤ η∗ a.s.
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Let col(x∗(t), y∗(t)) and col(x∗(t), y∗(t)) be two solutions of the equation
(2.1) with x∗(−T ) = ξ∗, x∗(−T ) = ξ∗; y∗(−T ) = η∗, y∗(−T ) = η∗. As
in [Ah2, Lemma 1] we can show that the solutions col(x∗(t), y∗(t)) and
col(x∗(t), y∗(t)) are defined on (−∞,−T ] (so in (−∞,∞) by Proposition
3), i.e., they are unexploded. Furthermore,

δ ≤ x∗(t) ≤ x∗(t) ≤ k1, y∗(t) ≤ y∗(t) ≤ k2, t ∈ (−∞,−T ].

On the other hand, by Proposition 3, there exists t0 ≥ T such that
col(x∗(t), y∗(t)) ∈ S and col(x∗(t), y∗(t)) ∈ S for any t ≥ t0. Put

ε = min
{

δ, min
−T≤t≤t0

y∗(t), min
−T≤t≤t0

x∗(t),
}

,

∆ = max
{

k1, k2, max
−T≤t≤t0

x∗(t), max
−T≤t≤t0

y∗(t)
}

.

Then it follows that
ε ≤ x∗(t) ≤ x∗(t) ≤ ∆,

ε ≤ y∗(t) ≤ y∗(t) ≤ ∆.

Proposition 7 is proved.

Proposition 8. If col(x̂(t), ŷ(t)) is a bounded above and below solution
of (1.1) then

δ ≤ x∗(t) ≤ x̂(t) ≤ x∗(t) ≤ k1,

δ ≤ y∗(t)) ≤ ŷ(t) ≤ y∗(t) ≤ k2,
t ∈ (−∞,−T ].

Proof. The proof is quite similar as in [Ah2, Lemma 1]. We omit it here.

We turn to the uniqueness. We have shown in Proposition 3 that
every solution of forward equation (1.1) is bounded above and below. So
the uniqueness (if it has) is determined by the backward equation on
(−∞,−T ]. From condition (2.1) and (2.2) it is easy to prove that there

exists a random positive variable γ such that
b(t)
e(t)

>
c(t)
f(t)

+ γ for any

t : |t| ≥ T but we need a further hypothesis.
Hypothesis.

(2.7) lim inf
t→∞

b(t)
e(t)

> lim sup
t→∞

c(t)
f(t)

·

It is easy to check that Ahmad’s condition implies this condition.
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Proposition 9. Under the hypotheses (2.1), (2.2) and (2.7), the solution
of equation (2.1) bounded above and below by positive constants is unique.

Proof. By Proposition 8 it suffices to show that

x∗(t) = x∗(t), y∗(t) = y∗(t).

By virtue of (2.7) and without loss of generality we may assume that there
exist three positive random variables α, β and γ such that

(2.8)
b(t)
e(t)

>
α

β
+ γ,

c(t)
f(t)

<
α

β
− γ; for all t ≤ −T.

Dividing both sides of (1.1) by x∗, x∗ and y∗, y∗ respectively and sub-
tracting them we get

ẋ∗

x∗
− ẋ∗

x∗
= −b(x∗ − x∗)− c(y∗ − y∗),

ẏ∗

y∗
− ẏ∗

y∗
= −e(x∗ − x∗)− f(y∗ − y∗),

or, equivalently,

(
ln

x∗

x∗

)′
= −b(x∗ − x∗)− c(y∗ − y∗),

(
ln

y∗

y∗

)′
= −e(x∗ − x∗)− f(y∗ − y∗).

Putting

U(t) = ln
x∗(t)
x∗(t)

≥ 0, V (t) = ln
y∗(t)
y∗(t)

≤ 0,

X(t) = x∗(t)− x∗(t) ≥ 0, Y (t) = y∗(t)− y∗(t) ≤ 0,

we have

U̇(t) = −b(t)X(t)− c(t)Y (t),

V̇ (t) = −e(t)X(t)− f(t)Y (t).(2.9)

By multiplying the first equation of (2.9) by β and the second one by α
and subtracting them we obtain

(2.10) αU̇(t)− βV̇ (t) =
(−βb(s) + αe(s)

)
X(s) +

(−βc(s) + αf(s)
)
Y (s).
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Since U(t) and V (t) are bounded above and below by positive constants,
it follows that

−T∫

−∞
(−βb(s) + αe(s))X(s)ds +

−T∫

−∞

(−βc(s) + αf(s)
)
Y (s)ds < ∞.

From (2.8) it follows that −βb(s)+αe(s) and −βc(s)+αf(s) are bounded
above and below by positive constants. Hence

−T∫

−∞
X(s)ds < ∞; −

−T∫

−∞
Y (s)ds < ∞.

Because X(t) and Y (t) are bounded together with their derivatives we get

lim
t→−∞

X(t) = lim
t→−∞

Y (t) = 0.

Furthermore, x∗(t), x∗(t), y∗(t), y∗(t) are also bounded below. Therefore,

lim
x∗(t)
x∗(t)

= 1, lim
y∗(t)
y∗(t)

= 1

which implies that

(2.11) lim
t→−∞

U(t) = lim
t→−∞

V (t) = 0.

Hence

−T∫

−∞
b(t)X(t) dt +

−T∫

−∞
c(t)f(t))Y (t) dt ≤ 0,

T∫

−∞
e(t)X(t) dt +

T∫

∞
f(t)Y (t) dt ≥ 0.

From these inequalities we obtain

(2.12)

−T∫
−∞

b(t)X(t) dt

T∫
−∞

e(t)X(t) dt

≤

−T∫
−∞

c(t)f(t))Y (t) dt

T∫
∞

f(t)Y (t) dt

·



ON THE EXISTENCE OF BOUNDED SOLUTIONS 157

On the other hand, if
−T∫
−∞

b(s)X(s)ds 6= 0 and
−T∫
−∞

c(s)Y (s)ds 6= 0 then by

the mean value of integrals it follows that

−T∫
−∞

b(s)X(s)ds

−T∫
−∞

e(s)X(s)ds

≥ inf
t<−T

b(t)
e(t)

> sup
t<−T

c(t)
f(t)

≥

−T∫
−∞

c(s)Y (s)ds

−T∫
−∞

f(s)Y (s)ds

which contradicts (2.12). Thus
−T∫
−∞

b(s)X(s)ds = 0 and
−T∫
−∞

c(s)Y (s)ds =

0. Hence, it is easy to see that X(t) ≡ 0, Y (t) ≡ 0. Proposition 9 is
proved.

Finally, we show that the above strictly positive solution attracts every
solution on [t0,+∞).

Proposition 10. If col(x1(t), y1(t)) and col(x2(t), y2(t)) are two solutions
of (1.1) defined on [0,∞) with x2(0) ≥ x1(0); y2(0) ≤ y1(0), then

(2.13) lim
t→+∞

(x2(t)− x1(t)) = 0; lim
t→+∞

(y2(t)− y1(t)) = 0.

Proof. From Proposition 1 it follows that

x2(t) ≥ x1(t); y2(t) ≤ y1(t) for any t ∈ [0,∞).

Hence, X(t) := x2(t)− x1(t) ≥ 0 and Y (t) := y2(t)− y1(t) ≤ 0. As in the
proof of Proposition 9 we can show that

∞∫

T

X(t) dt < ∞; −
∞∫

T

Y (t) dt < ∞.

Since X(t) and Y (t) are bounded together with their derivatives, it implies
that

lim
t→∞

X(t) = 0; lim
t→∞

Y (t) = 0.

The proposition is proved. .

Proposition 11. The unique bounded above and below solution mentioned
in Proposition 9 is attractive.
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Proof. Let col(x∗(t), y∗(t)) be the unique solution bounded above and
below on (−∞, +∞). Suppose that col(x(t), y(t)) is an arbitrary positive
solution of (1.1). If either x∗(0) ≤ x(0); y∗(0) ≥ y(0) or x∗(0) ≥ x(0);
y∗(0) ≤ y(0) then the proof follows from Proposition 10. Therefore, we
only have to consider the case x∗(0) ≤ x(0); y∗(0) ≤ y(0).

Let col(x(t), y(t)) be the solution of (1.1) satisfying x(0) = x∗(0);
y(0) = y(0). Since x(0) = x∗(0); y(0) ≥ y∗(0), we have

(2.14) lim
t→∞

(x(t)− x∗(t)) = 0; lim
t→∞

(y(t)− y∗(t)) = 0.

On the other hand x(0) ≤ x(0); y(0) = y(0). Therefore,

(2.15) lim
t→∞

(x(t)− x(t)) = 0; lim
t→∞

(y(t)− y(t)) = 0.

Combining (2.14) with (2.15) gives the proof of Proposition 11.

3. Existence of stationary solutions

We now suppose that the processes a, b, c, d, e, f are stationary. We
shall show that the unique bounded above and below solution in Propo-
sitions 8 and 9 is a stationary process too. The following Lemma can be
referred in [Aw].

Lemma 12. Suppose that ξ(t) is a stationary process and the system

(3.1) Ẋ = g
(
ξ(t), X(t)

)
; t ∈ (−∞,∞), X ∈ Rd

has a solution bounded in probability in the following sense: for any γ > 0,
there is a compact set Kγ ⊂ Rd such that

lim
t→∞

1
2t

t∫

−t

P{X(t) ∈ Kγ} dt > 1− γ.

Then (3.1) possesses a stationary solution, namely η(t), such that P{η(t) ∈
Kγ} ≥ 1− γ for any γ.

Proposition 13. The solution col(x(t), y(t)) mentioned in Propositions
8 and 9 is a stationary process

Proof. From (2.7) it follows that for any γ > 0,

P{ε ≤ x(t) ≤ ∆; ε ≤ y(t) ≤ ∆} = 1.
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Let K be a compact [α, β]×[α, β] ⊂ R2 such that P{α < ε;∆ > β} ≥ 1−γ
then

P
{
α ≤ x(t) ≤ β; α ≤ y(t) ≤ β

} ≥ 1− γ.

Therefore, the conclusion follows from the hypothesis of Lemma 12.

Open Problem. The author is not sure whether the obtained result
remains true if conditions (2.1) and (2.3) are replaced by an averaging
condition (similar as in the periodic cases):

lim sup
|T |→∞

1
2T

T∫

−T

a(t)
b(t)

dt < lim inf
|T |→∞

1
2T

T∫

−T

d(t)
e(t)

dt a.s.(3.2)

lim sup
|T |→∞

1
2T

T∫

−T

d(t)
f(t)

dt < lim inf
|T |→∞

1
2T

T∫

−T

a(t)
c(t)

dt a.s.(3.3)
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