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ON NECESSARY OPTIMALITY CONDITIONS IN
MULTIFUNCTION OPTIMIZATION

WITH PARAMETERS

PHAN QUOC KHANH AND LE MINH LUU

Abstract. We consider multifunction optimization problems with pa-
rameters. Necessary optimality conditions of the Fritz John and Kuhn-
Tucker types are obtained with relaxed differentiability assumptions on
the state variable and convexlikeness assumptions on the parameter.

1. Introduction

The range of application of multifunctions, i.e., set-valued functions
is very large. An optimization theory involving multifunctions was es-
tablished by Corley [1, 2, 3]. In [3] the Fritz John necessary optimality
condition is extended to multifunction optimization. In [11, 12, 14] there
are improvements of the above result in various cases.

This note is devoted to considering necessary optimality conditions
for multifunction optimization problems with parameters of the following
form.

Let X, Y , Z and W be Banach spaces, Y and Z being ordered by convex
cones K and M , containing the origins and with intK 6= ∅, intM 6= ∅,
respectively. Let U be an arbitrary set. Let F , G be multifunctions of
X×U into Y and Z, respectively. Let p be a (single-valued) map of X×U
into W . The problem under consideration is

min F (x, u),

G(x, u) ⊂ −M,

p(x, u) = 0;
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or
min F (x, u),

G(x, u) ∩ (−M) 6= ∅,
p(x, u) = 0.

(P̃ )

Here “min” means that we are looking for a (Pareto) minimum or a
weak minimum. A multifunction F : X ∼→ Y is said to have a (global)
minimum at (x0; f0), where f0 ∈ F(x0), on a set A ⊂ X if

(1) F(A)− f0 ⊂ Y \ ((−K) \K).

If (1) is replaced by

(2) F(A)− f0 ⊂ Y \ (−intK).

then (x0; f0) is called a (global) weak minimum of F on A. If there is a
neighborhood N of x0 such that one has (1) or (2) with F(A) replaced by
F(A∩N), then (x0; f0) is called a local minimum or local weak minimum,
respectively, of F .

Since U is an arbitrary set, on considering local minima or local weak
minima of (P ) and (P̃ ) we adopt for U the trivial topology consisting of
only two sets ∅ and U , and for X × U the product topology.

Problems with parameters of the types (P ) and (P̃ ) are often met
in practical situations. Such situations usually require that the assump-
tions imposed on x and on u should be different. For instance, in control
problems differentiability assumptions imposed on the control u should be
much weaker than that on the state variable x. (P ) coincides with (P̃ ) if G
is single-valued. For both constraints G(x, u) ⊂ −M and G(x, u)∩(−M) 6=
∅ become then the inequality constrainst G(x, u) ≤ 0. (For the sake of
simplicity the notation ≤ is used commonly for various ordering in vari-
ous spaces if no confusion may occur.) When F and G are single-valued,
optimization problems with parameters were considered, e.g. in [5, 6, 7,
8, 9, 10, 13]. In the present note we restrict ourselves to the case where
p is single-valued since in most applications equality constraints represent
state equations (being often differential equations), initial and boundary
conditions.

Let Z∗ stand for the topological dual to Z. The dual cone M∗ of M is

M∗ :=
{
µ ∈ Z∗ : 〈µ, z〉 ≥ 0 ∀z ∈ M

}
.
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In later considered situations a feasible point (x0, u0) and some g0 ∈
G(x0, u0) ∩ (−M) will be fixed. Then we set

M0 :=
{
γ(z + g0) : γ ∈ R+, z ∈ M

}
,

M∗
0 :=

{
µ ∈ M∗ : 〈µ, g0〉 = 0

}
= (M0)∗.

For a multifunction F : X ∼→ Y its graph is

grF :=
{
(x, y) ∈ X × Y : y ∈ F(x)

}

and its domain is domF := {x ∈ X : F(x) 6= ∅}. We recall that the
Clarke derivative of F at (x0; f0) ∈ grF , denoted by DF(x0; f0), is a
multifunction of X into Y whose graph is

grDF(x0; f0) =
{
(v, w) ∈ X × Y : ∀(xn, fn) →F (x0, f0), ∀tn → 0+,

∃(vn, wn) → (v, w);∀n, fn + tnwn ∈ F(xn + tnvn)
}
,

where →F means that (xn, fn) ∈ grF and (xn, fn) → (x0, f0). Recall also
that DF(x0, f0) is always a closed convex process, i.e. a multifunction
whose graph is a nonempty closed convex cone. For a single-valued map
p : X ×U → W , px(x0, u0) will stand for the Fréchet derivative of p(., u0)
at x0.

In our consideration only the following directional differentiability with
respect to x is imposed on F and G.

Definition 1. Let X and Y be Banach spaces, Y being ordered by a
convex cone K. A multifunction F : X ∼→ Y is called uniformly K-
differentiable in the direction x ∈ X at (x0, f0) ∈ grF if for each neigh-
borhood V of zero in Y there is a neighborhood N of x and a real γ0 > 0
such that ∀γ ∈ (0, γ0), ∀x ∈ N , ∀f ∈ F(x0 + γx), ∀f ′ ∈ DF(x0; f0)x

1
γ

(f − f0)− f ′ ∈ V −K.

F is said to be uniformly K-differentiable at (x0; f0) if this differentiability
holds for all directions x in dom DF (x0; f0).

Note that the parameter set U in (P ) and (P̃ ) is equipped with no
structure. However, the following extension to multifunctions of the con-
vexlikeness introduced by Fan [4] is needed.
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Definition 2. A multifunction F : U ∼→ Y where U is a set and Y
is a vector space ordered by a convex cone K, is said to be K-convexlike
in (U1, U2) with U1 ⊂ U , U2 ⊂ U if ∀(u1, u2) ∈ U1 × U2, ∀f1 ∈ F(u1),
∀f2 ∈ F(u2), ∀γ ∈ [0, 1], ∃u ∈ U , ∃fu ∈ F(u),

γf1 + (1− γ)f2 − fu ∈ K.

Definition 3. Let X, Y and F be as in Definition 1. Let x0 ∈ domF and
T ⊂ F(x0) be nonempty. Then, F is called K-strong lower semicontinuous
(K-s.l.s.c.) with T at x0 if for each neighborhood V of zero in Y , there is
a neighborhood N of x0 such that ∀x ∈ N , ∃fx ∈ F(x),

fx − T ⊂ V −K.

Notice that, if T = F(x0) and F is K-s.l.s.c. with T , then F(.) + K is
l.s.c. in the usual sense (for multifunctions).

2. Main results

First we present necessary optimality conditions for local weak minima
of (P̃ ). Of course these necessary conditions hold also for local minima.

Theorem 1 (Fritz John necessary condition). Assume that

(i) p(., u0) is continuously differentiable at x0 and px(x0, u0) is onto,
where (x0, u0) is feasible for (P̃ );

(ii) F (., u0) and G(., u0) are uniformly K-differentiable at (x0, u0; f0)
and uniformly M -differentiable at (x0, u0; g0), respectively, where f0 ∈
F (x0, u0), g0 ∈ G(x0, u0) ∩ (−M);

(iii) for each u 6= u0, F (., u) (G(., u), respectively) is K-s.l.s.c. with
F (x0, u) (M -s.l.s.c. with G(x0, u)) at x0. Moreover, F (., u0) (G(., u0)) is
−K-s.l.s.c. with f0 (−M -s.l.s.c. with g0, respectively) at x0;

(iv) for each x in a neighhorhood V of x0, (F, G, p)(x, .) is K ×M ×
{0}-convexlike in (U, {u0}). Moreover, (F, G, p)(x0, .) is K × M × {0}-
convexlike in (U,U).

If (x0, u0; f0) is a local weak minimum of (P̃ ), then there exists

(λ0, µ0, ν0) ∈ K∗ ×M∗
0 ×W ∗ \ {0}

such that, for all (x, u) ∈ X × U ,
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〈λ0, DxF (x0, u0; f0)x + F (x0, u)− f0〉
+ 〈µ0, DxG(x0, u0; g0)x + G(x0, u)− g0〉
+ 〈ν0, px(x0, u0)x + p(x0, u)〉 ⊂ R+.(3)

Proof. It is clear that (3) is true for

x 6∈ domDxF (x0, u0; f0) ∩ dom DxG(x0, u0; g0)

since the leff-hand side of (3) is empty. So we may assume that x belongs
to this intersection. However, for the simplicity of notation, we still write
x ∈ X.

Let C be the set of all (y, z, w) ∈ Y ×Z×W such that ∃(x, u) ∈ X×U ,
∃f ′x ∈ DxF (x0, u0; f0)x, ∃fu

x0
∈ F (x0, u), ∃g′x ∈ DxG(x0, u0; g0)x, ∃gu

x0
∈

G(x0, u),

f ′x + fu
x0
− f0 − y ∈ −intK,(4)

g′x + gu
x0
− g0 − z ∈ −intM,(5)

px(x0, u0)x + p(x0, u) = w.(6)

We claim that C is convex. Indeed, if (yi, zi, wi) ∈ C, i = 1, 2, then, with
the notations defined similarly as the terms in (4)-(6), for all γ ∈ [0, 1] one
has

(7) γf ′x1
+ (1− γ)f ′x2

+ γfu1
x0

+ (1− γ)fu2
x0
− f0 ≤ γy1 + (1− γ)y2,

(8) γg′x1
+ (1− γ)g′x2

+ γgu1
x0

+ (1− γ)gu2
x0
− g0 ≤ γz1 + (1− γ)z2,

(9) px(x0, u0)(γx1 + (1− γ)x2) + γp(x0, u1) + (1− γ)p(x0, u2)

= γw1 + (1− γ)w2.

By the convexity of the Clarke derivative, setting x := γx1 + (1 − γ)x2

one sees that

f ′x := γf ′x1
+ (1− γ)f ′x2

∈ DxF (x0, u0; f0)x,

g′x := γg′x1
+ (1− γ)g′x2

∈ DxG(x0, u0; g0)x.

The K×M×{0}-convexlikeness of (F, G, p)(x0, .) in (U,U) yields a u ∈ U ,
fu

x0
∈ F (x0, u) and gu

x0
∈ G(x0, u) such that
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fu
x0
≤ γfu1

x0
+ (1− γ)fu2

x0
,

gu
x0
≤ γgu1

x0
+ (1− γ)gu2

x0
,

p(x0, u) = γp(x0, u1) + (1− γ)p(x0, u2).

Consequently, (7)-(9) together show that

(y, z, w) := γ(y1, z1, w1) + (1− γ)(y2, z2, w2)

belongs to C, i.e. C is convex.
Next we show that intC 6= ∅. Assume that (y, z, w) ∈ C. Then for a

small and fixed ε > 0,

f ′x + fu
x0
− f0 − y + εBY ⊂ −intK,(10)

g′x + gu
x0
− g0 − z + εBZ ⊂ −intM,(11)

px(x0, u0)x + p(x0, u) = w,(12)

where BX , BY and BZ are open unit balls in X, Y and Z, respectively.
By the uniform K-differentiability of F (., u0) assumed in (ii), ∃δ > 0,

∃γ0 > 0, ∀x ∈ x + δBX , ∀γ ∈ (0, γ0), ∀f ∈ F (x0 + γx, u0),

(13)
1
γ

(f − f0)− f ′x ∈
ε

4
BY −K.

Now for each x ∈ x +
δ

2
BX , from f ′x ∈ DxF (x0, u0; f0)x it follows that,

for the given ε, ∃γ ∈ (0, γ0), ∃x′ ∈ x +
δ

2
BX , ∃f ∈ F (x0 + γx′, u0),

(14) f ′x −
1
γ

(f − f0) ∈ ε

4
BY .

(13) and (14) together show that for all x ∈ x̂ +
δ

2
BX ,

∀f ′x ∈ DxF (x0, u0; f0)x, ∃γ ∈ (0, γ0), ∃x′ ∈ x+
δ

2
BX , ∃f ∈ F (x0+γx′, u0),

(15) f ′x − f ′x = f ′x −
1
γ

(f − f0) +
1
γ

(f − f0)− f ′x ∈
ε

2
BY −K.

Using (10), (15) one sees that, for all x ∈ x +
δ

2
BX and

f ′x ∈ DxF (x0, u0; f0)x,
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f ′x + fu
x0
− f0 − y +

ε

2
BY ⊂ −K − intK ⊂ −intK.

Similarly, for all x ∈ x +
δ

2
BX and g′x ∈ DxG(x0, u0; g0)x,

g′x + gu
x0
− g0 − z +

ε

2
BY ⊂ −intM.

Considering (12), one sees from assumption (i) that px(x0, u0)
(δ

2
BX

)
+

p(x0, u) contains an open neighborhood w + ε1BW of w. Now it is easy to
check that

(y +
ε

2
BY )×

(
z +

ε

2
BZ

)
× (w + ε1BW ) ⊂ C,

i.e. intC 6= ∅. If

(16) C ∩ {(−intK)× (−intM∗∗
0 )× {0})} = ∅,

then by a standard separation theorem we obtain (3).
So, it remains to prove (16). Suppose to the contrary that there are

(x̂, û) ∈ X × U , f ′x̂ ∈ DxF (x0, u0; f0)x̂, g′x̂ ∈ DxG(x0, u0; g0)x̂, f û
x0
∈

F (x0, û) and gû
x0
∈ G(x0, û) such that

f ′x̂ + f û
x0
− f0 ∈ −intK,(17)

g′x̂ + gû
x0
− g0 ∈ −intM∗∗

0 ,(18)

px(x0, u0)x̂ + p(x0, û) = 0.(19)

Defining a new map P : X ×R → W by

(20) P(x, α) := αp(x0 + x, û) + (1− α)p(x0 + x, u0),

we see that

P(0, 0) = 0, P ′(0, 0)(x, α) = px(x0, u0)x+αp(x0, û) and P ′(0, 0)(x̂, 1) = 0.

Hence, by the Lusternik theorem, there exist t0 > 0 and maps t → x̂(t),
t → α̂(t) of [0, t0] into X and R, respectively, such that x̂(t) → 0 and
α̂(t) → 0 as t does and, for all t ∈ [0, t0],
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(21) P(t(x̂ + x̂(t), t(1 + α̂(t))) = 0.

Setting x(t) := x0 + t(x̂ + x̂(t)), from (20) and (21) we obtain

t(1 + α̂(t))p(x(t), û) + (1− t(1 + α̂(t)))p(x(t), u0) = 0.

Hence, by (iv), for all t small enough, there exists u(t) ∈ U such that

p(x(t), u(t)) = 0.

A contradiction to the minimality of (x0, u0; f0) will be achieved if we can
show that for all sufficiently small t, there is ft ∈ F (x(t), u(t)) such that

G(x(t), u(t)) ∩ (−M) 6= ∅,
ft − f0 ∈ −intK.

These two facts should be shown by the following common argument,
which we write down explicitly only for G. By virtue of the assumption
(iii), for all sufficiently small t and ε, there are gû

x(t) ∈ G(x(t), û) and
gu0

x(t) ∈ G(x(t), u0) such that

gû
x(t) − gû

x0
∈ εBZ −M,(22)

−gu0
x(t) + g0 ∈ εBZ −M.(23)

In turn, the uniform M -differentiability of G(., u0) assumed in (ii) ensures
that, for all δ and t small enough,

(24) gu0
x(t) ∈ g0 + tg′x̂ +

tδ

2
BZ −M.

According to (18) we choose δ so small that

(25) g′x̂ + gx̂
x0
− g0 + δBZ −M ⊂ −intM∗∗

0 .

Estimating gu0
x(t) + t(1 + α̂(t))(gû

x(t) − gu0
x(t)) we get, by (22), (23) and the

fact α̂(t) → 0 that

t(1 + α̂(t))(gû
x(t) − gu0

x(t))

= t(1 + α̂(t))(gû
x(t) − gû

x0
− gu0

x(t) + g0) + t(gû
x0
− g0) + tα̂(t)(gû

x0
− g0)

⊂ t(1 + α̂(t))(2εBZ −M) + t(gû
x0
− g0) + tεBZ

⊂ t(gû
x0
− g0 +

δ

2
BZ −M)
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for all ε > 0 small enough. This together with (24) give bt
δ ∈ δBZ and

mt ∈ M such that

(26) gu0
x(t) + t(1 + α̂(t))(gû

x(t) − gu0
x(t)) = g0 + t(g′x̂ + gû

x0
− g0 + bt

δ −mt).

Hence, in view of assumption (iv), there is gt ∈ G(x(t), u(t)) such that

(27) g0 + t(g′x̂ + gû
x0
− g0 + bt

δ −mt) ∈ gt + M.

To verify that G(x(t), u(t)) ∩ (−M) 6= ∅ for all t > 0 small enough, we
assume to the contrary that ∃tn → 0+, ∃µn ∈ M∗, ‖µn‖ = 1 (then assume
that µ∗n-weakly tends to µ ∈ M∗), 〈µn, gtn〉 ≥ 0. µ must belong to M∗

0 .
Indeed, if µ 6∈ M∗

0 , there would be β > 0 such that 〈µ, g0〉 < −β. On the
other hand, it follows from (27) that

(28) 〈µn, gtn〉 ≤ 〈µn, g0〉+ tn〈µn, g′x̂ + gû
x0
− g0 + btn

δ −mtn〉.

Therefore, for sufficiently small tn, 〈µn, gtn〉 < 0, which is a contradiction.
Now since µ ∈ M?

0 , a glance at (25) yields, for large n,

tn〈µn, g′x̂ + gû
x0
− g0 + btn

δ −mtn〉 < 0.

Therefore (28) contradicts the fact that 〈µn, gtn〉 ≥ 0.
The above argument applied to F instead of G will give ft ∈ F (x(t), u(t))

such that (similarly as (27), (25))

ft − f0 ∈ −K + t(f ′x̂ + f û
x0
− f0 + bt

δ − kt) ⊂ −K − intK = −intK.

Thus, (16) must hold and the proof is complete.

Remark. The necessary condition (3) has a form of the classical multiplier
rule. We can write this condition in the following equivalent form

〈λ0, DxF (x0, u0; f0)x〉+ 〈µ0, DxG(x0, u0; g0)x〉(a)

+ 〈ν0, px(x0, u0)x〉 ⊂ R+ ∀ x ∈ X;

〈λ0, f0〉+ 〈µ0, g0〉+ 〈ν0, p0〉(b)

= min
u∈U

{
f(λ0, x0, u) + g(µ0, x0, u) + p(ν0, x0, u)

}
,

where p0 = p(x0, u0) = 0,
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f(λ0, x0, u) = min
{〈λ0, y〉 : y ∈ F (x0, u)

}
,

g(µ0, x0, u) = min
{〈µ0, z〉 : z ∈ G(x0, u)

}
,

and p(ν0, x0, u) = 〈ν0, p(x0, u)〉. This equivalent form was used in [5, 7, 8,
9, 10] instead of (3).

Adding a constraint qualification of the Slater type we get from Theo-
rem 1 an extension of the Kuhn-Tucker necessary condition as follows.

Theorem 2. In additon to the assumptions of Theorem 1, assume that
px(x0, u0)X+p(x0, U) contains a neighborhood of zero in W and that there
are (x̃, ũ) ∈ X × U , g′x̃ ∈ DxG(x0, u0; g0)x̃ and gũ

x0
∈ G(x0, ũ) such that

g′x̃ + gũ
x0
− g0 ∈ −intM∗∗

0 ,

px(x0, u0)x̃ + p(x0, ũ) = 0.

Then, λ0 6= 0.

Proof. Suppose λ0 = 0. If µ0 = 0, then ν0 6= 0. Since px(x0, u0)X +
p(x0, U) includes a neighborhood of zero, one can choose (x1, u1) ∈ X×U
such that

〈ν0, px(x0, u0)x1 + p(x0, u1)〉 < 0,

contradicting (3). So µ0 must be non zero. But, then (x̃, ũ) does not
satisfy (3). Thus, λ0 6= 0.

Now we consider the problem (P). We shall see that with a small mod-
ification in the assumption (iv) the two theorems are still valid for (P ).
We need the following definition

Definition 4. Let F , G and p be defined as in the problem (P). Then
(F,G, p)(x, .) is K×M×{0}-convexlike in (U, {u0}) strongly with respect
to G if ∀u1 ∈ U , ∀(f1, g1) ∈ F (x, u1) × G(x, u1), ∀(f0, g0) ∈ F (x, u0) ×
G(x, u0), ∀γ ∈ [0, 1], ∃u ∈ U , ∀gu ∈ G(x, u), ∃fu ∈ F (x, u),

γf1 + (1− γ)f0 − fu ∈ K,

γg1 + (1− γ)g0 − gu ∈ M,

γp(x, u1) + (1− γ)p(x, u0) = p(x, u).

It is easy to check that Theorems 1 and 2 still hold for (P) if the con-
vexlikeness in (U, {u0}) assumed in (iv) is replaced by the convexlikeness
in (U, {u0}) strong with respect to G.
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3. Remarks

We discuss the assumptions of Theorems 1 and 2. Observe first that (i)
is rather strict but it is probably inevitable (in a certain sense) because it is
usually imposed on the equality constraint in order to apply the Lusternik
theorem and it is satisfied in various practial situations. The uniform dif-
ferentiability on (ii) is an extension to multifunctions of the corresponding
notion of Ioffe-Tihomirov [5]. The example below gives a multifunction
that satisfies both (ii) and (iii). The K×M ×{0}-convexlikeness assumed
in (iv) is of course much weaker than the K × M × {0}-convexity often
imposed in convex cases.

Example. Let X = R, U = R and x0 ∈ X. Let G : X ×U ∼→ R defined
by

G(x, u) := (x− x0)2(|u|[0, 1]− 1).

We verify (ii) and (iii) for (x0, u0) := (x0,−1).

(ii) For given ε > 0 and x ∈ X we will find δ > 0 such that, ∀x ∈
(x0 − δ, x0 + δ), ∀g′ ∈ DxG(x0, u0; g0)x, ∀γ > 0,

(29) G(x0 + γx, u0)− g0 − γg′ ⊂ γ(−ε, ε)−R+,

where g0 ∈ G(x0, u0) = {0}. First we show that DxG(x0, u0; 0)x = {0}
∀x ∈ X. By definition, g′ ∈ DxG(x0, u0; 0)x means that ∀gn → 0, ∀xn →
x0, ∀tn → 0+, ∃xn → x, ∃g′n → g′, ∀n,

gn + tng′n ∈ G(xn + tnxn, u0) ≡ [−(xn + tnxn − x0)2, 0].

Choosing gn ≡ 0, xn ≡ x0 yields g′n ∈ [−tnx2
n, 0] ∀n. Therefore, since

g′n → g′, tn → 0+ and xn → x, g′ = 0. Then (29) becomes

[−γ2x2, 0] ⊂ γ(−ε, ε)−R+,

which always holds (for any δ > 0 and γ > 0).

(iii) For any u 6= u0 and ε > 0 we can find δ > 0 such that ∀x ∈
(x0 − δ, x0 + δ),

G(x, u)−G(x0, u) ≡ [0, (x− x0)2|u|]− (x− x0)2 ⊂ (−ε, ε)−R+.

(This property is even stronger than the R+-s.l.s.c. with G(x0, u).) Note

that δ may be taken as
√

ε

|u| .
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Now we check a property stronger than the −R-s.l.s.c. with g0 = 0 of
G(., u0). For any ε > 0, one can find δ > 0 such that, ∀x ∈ (x0−δ, x0 +δ),

G(x, u0)− g0 ≡ [−(x− x0)2, 0] ⊂ (−ε, ε) + R+.

So one may choose δ =
√

ε.
Let us observe that Theorems 1 and 2 contain as special cases the

corresponding results in [5, 9] for the problem with px(x0, u0)X = W .
Necessary optimality conditions for (P ) and (P̃ ) when px(x0, u0)X has
a finite codimention need further considerations and are the aim of our
forthcoming research.
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