logo_acta

Acta Mathematica Vietnamica

Some Liouville Results for Quasilinear Hamilton-Jacobi Type Problems

Phuoc Vinh Dinh , Kim Anh T. Le , icon-email Phuong Le

Abstract

We prove a Liouville type theorem for nonnegative solutions of the problem $-\Delta_p u + |\nabla u|^\gamma = u^q$ in $\mathbb {R}^N_+$ with zero Dirichlet boundary condition, where $p>2$ and $q>\gamma > p-1$. Our proof combines a recent monotonicity result with a new Liouville type theorem for nonnegative stable solutions in dimension $N