Necessary Optimality Conditions for Second-Order Local Strict Efficiency for Constrained Nonsmooth Vector Equilibrium Problems
Tran Van Su , Dinh Dieu Hang
This paper is concerned with primal and dual second-order optimality conditions for the second-order strict efficiency of nonsmooth vector equilibrium problem with set, cone and equality conditions. First, we propose some second-order constraint qualifications via the second-order tangent sets. Second, we establish necessary optimality conditions of order two in terms of second-order contingent derivatives and second-order Shi sets for a second-order strict local Pareto minima to such problem under suitable assumptions on the second-order constraint qualifications. An application of the result for the twice Fréchet differentiable functions for the second-order local strict efficiency of that problem is also presented. Some illustrative examples are also provided for our findings.