On a Backward Heat Conduction Problem Associated with Asymmetric Final Data
Le Minh Triet , Luu Hong Phong , Pham Hoang Quan
In this work, we investigate an abstract parabolic problem associated with the final data, with one specific case of the abstract parabolic problem being considered in polar coordinates. Specially, the present paper gives the first treatment which is not only more general but also more applicable in the case the backward heat problem (BHP) is not symmetric and not axisymmetric in polar coordinates. In general, the above problem is severely ill-posed in the sense of Hadamard. Here, we propose the modified quasi-boundary value (MQBV) method in order to obtain the stability of the regularized solution for the problem. To our knowledge, our results are new and they improve the results of two previous papers (see Cheng and Fu (Inverse Probl. Sci. Eng. 17(8), 1085–1093 2009), (Acta Math. Sinica, English Series 26(11), 2157–2164 2010)) while the authors only considered axisymmetric or radially symmetric data. Finally, a numerical example is given to demonstrate the feasibility and efficiency of our method.