logo_acta

Acta Mathematica Vietnamica

On Adjusted Hilbert-Samuel Functions

icon-email Nguyen Tuan Long

Abstract

Let (R,m) be a Noetherian local ring and M a finitely generated R-module of dimension d.  Let q be a parameter ideal of M. Consider an adjusted Hilbert-Samuel function in n defined by 
fq,M(n)=(M/qn+1M)i=0dadegi(q;M)(n+ii),
 where adegi(q;M) is the i-th arithmetic degree of M with respect to q.  In this paper, we prove that if q is a distinguished parameter ideal  then there exists an integer n0 such that fq,M(n)0 for all nn0. Moreover, if M is sequentially generalized Cohen-Macaulay then n0 exists independently of the choice of q