SOME PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES
AMIR MAFI
Let $R$ be a commutative Noetherian ring, $\mathfrak{a}$ an ideal of $R, M$ and N be two finitely generated $R$-modules. Let $t$ be a positive integer. We prove that if $R$ is local with maximal ideal $\mathfrak{m}$ and $M \otimes_R N$ is of finite length then $H^t_{\mathfrak{m}}(M,N)$ is of finite length for all $t \geq 0$ and
$$l_R(H^t_{\mathfrak{m}}(M,N))\leq \sum\limits_{i=0}^tl_R(\mathrm{Ext}_R^i(M,H^{t-i}_{\mathfrak{m}}(N))).$$
This yields $l_R(H^t_{\mathfrak{m}}(M,N))=l_R(\mathrm{Ext}^t_R(M,N))$.
Additionally, we show that $\mathrm{Ext}^i_R(R/\mathfrak{a},N)$ is Artinian for all $i \leq t$ if and only if $H^i_{\mathfrak{a}}(M,N)$ is Artinian for all $i \leq t$. Moreover, we show that whenever $\dim(R/\mathfrak{a}) = 0$ then $H^t_{\mathfrak{a}}(M,N)$ is Artinian for all $t \geq 0$.